Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +213 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,215 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import numpy as np
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import sympy as sp
|
| 5 |
+
from sympy.parsing.sympy_parser import parse_expr
|
| 6 |
+
from sympy.utilities.lambdify import lambdify
|
| 7 |
+
import io
|
| 8 |
+
import os
|
| 9 |
+
import base64
|
| 10 |
+
from datetime import datetime
|
| 11 |
+
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
|
| 12 |
+
|
| 13 |
+
# Create required directories
|
| 14 |
+
os.makedirs("uploads", exist_ok=True)
|
| 15 |
+
|
| 16 |
+
# Page config
|
| 17 |
+
st.set_page_config(page_title="Equation2Graph", page_icon="📈", layout="wide")
|
| 18 |
+
|
| 19 |
+
# Session state
|
| 20 |
+
if 'history' not in st.session_state:
|
| 21 |
+
st.session_state.history = []
|
| 22 |
+
|
| 23 |
+
# Initialize NLP model
|
| 24 |
+
@st.cache_resource
|
| 25 |
+
def load_nlp_model():
|
| 26 |
+
try:
|
| 27 |
+
tokenizer = AutoTokenizer.from_pretrained("t5-small")
|
| 28 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("t5-small")
|
| 29 |
+
return tokenizer, model
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.warning(f"⚠ AI model could not be loaded: {str(e)}. Falling back to basic equation parsing.")
|
| 32 |
+
return None, None
|
| 33 |
+
|
| 34 |
+
# Load models
|
| 35 |
+
tokenizer, model = load_nlp_model()
|
| 36 |
+
|
| 37 |
+
def convert_nl_to_equation(nl_input):
|
| 38 |
+
"""Convert natural language to equation using AI model or fallback to basic parsing"""
|
| 39 |
+
if tokenizer and model:
|
| 40 |
+
try:
|
| 41 |
+
inputs = tokenizer.encode(nl_input, return_tensors="pt", truncation=True)
|
| 42 |
+
outputs = model.generate(inputs, max_length=50)
|
| 43 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 44 |
+
except Exception as e:
|
| 45 |
+
st.error(f"Error in AI conversion: {str(e)}")
|
| 46 |
+
return basic_nl_to_equation(nl_input)
|
| 47 |
+
else:
|
| 48 |
+
return basic_nl_to_equation(nl_input)
|
| 49 |
+
|
| 50 |
+
def basic_nl_to_equation(text):
|
| 51 |
+
"""Basic natural language to equation conversion"""
|
| 52 |
+
# Define basic math terms
|
| 53 |
+
terms = {
|
| 54 |
+
'squared': '^2',
|
| 55 |
+
'cubed': '^3',
|
| 56 |
+
'plus': '+',
|
| 57 |
+
'minus': '-',
|
| 58 |
+
'times': '*',
|
| 59 |
+
'multiply by': '*',
|
| 60 |
+
'divided by': '/',
|
| 61 |
+
'over': '/',
|
| 62 |
+
'to the power of': '^',
|
| 63 |
+
'sin of': 'sin(',
|
| 64 |
+
'cos of': 'cos(',
|
| 65 |
+
'tan of': 'tan(',
|
| 66 |
+
'exponential of': 'exp(',
|
| 67 |
+
'log of': 'log(',
|
| 68 |
+
'absolute value of': 'abs('
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
# Normalize text
|
| 72 |
+
text = text.lower().strip()
|
| 73 |
+
|
| 74 |
+
# Replace terms
|
| 75 |
+
for term, symbol in terms.items():
|
| 76 |
+
text = text.replace(term, symbol)
|
| 77 |
+
|
| 78 |
+
# Clean up the equation
|
| 79 |
+
text = text.replace(' ', '')
|
| 80 |
+
if text.count('(') > text.count(')'):
|
| 81 |
+
text += ')' # Close any unclosed parentheses
|
| 82 |
+
|
| 83 |
+
# Remove any invalid characters
|
| 84 |
+
text = ''.join(c for c in text if c.isalnum() or c in '+-*/^().')
|
| 85 |
+
return text
|
| 86 |
+
|
| 87 |
+
def parse_and_validate_equation(equation_str):
|
| 88 |
+
try:
|
| 89 |
+
equation_str = equation_str.replace('^', '')
|
| 90 |
+
expr = parse_expr(equation_str)
|
| 91 |
+
x = sp.Symbol('x')
|
| 92 |
+
f = lambdify(x, expr, modules=['numpy'])
|
| 93 |
+
return f, expr
|
| 94 |
+
except Exception as e:
|
| 95 |
+
st.error(f"Error parsing equation: {str(e)}")
|
| 96 |
+
return None, None
|
| 97 |
+
|
| 98 |
+
def plot_equation(f, expr, x_range=(-10, 10), points=1000):
|
| 99 |
+
try:
|
| 100 |
+
fig, ax = plt.subplots(figsize=(10, 6))
|
| 101 |
+
x = np.linspace(x_range[0], x_range[1], points)
|
| 102 |
+
y = f(x)
|
| 103 |
+
ax.plot(x, y, '-b', label=str(expr))
|
| 104 |
+
ax.grid(True, alpha=0.3)
|
| 105 |
+
ax.axhline(y=0, color='k', linestyle='-', alpha=0.3)
|
| 106 |
+
ax.axvline(x=0, color='k', linestyle='-', alpha=0.3)
|
| 107 |
+
ax.set_xlabel('x')
|
| 108 |
+
ax.set_ylabel('y')
|
| 109 |
+
ax.set_title(f'Graph of {str(expr)}')
|
| 110 |
+
ax.legend()
|
| 111 |
+
return fig
|
| 112 |
+
except Exception as e:
|
| 113 |
+
st.error(f"Error plotting equation: {str(e)}")
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
def get_download_link(fig):
|
| 117 |
+
buf = io.BytesIO()
|
| 118 |
+
fig.savefig(buf, format='png', bbox_inches='tight')
|
| 119 |
+
buf.seek(0)
|
| 120 |
+
b64 = base64.b64encode(buf.read()).decode()
|
| 121 |
+
return f'<a href="data:image/png;base64,{b64}" download="equation_plot.png">📥 Download Plot</a>'
|
| 122 |
+
|
| 123 |
+
# Header
|
| 124 |
+
st.title("📈 Equation2Graph")
|
| 125 |
+
st.markdown("Visualize mathematical equations instantly, from symbolic or natural language input!")
|
| 126 |
+
|
| 127 |
+
# Columns
|
| 128 |
+
col1, col2 = st.columns([2, 1])
|
| 129 |
+
|
| 130 |
+
with col1:
|
| 131 |
+
# Natural language input
|
| 132 |
+
st.subheader("🗣 Describe your equation (optional)")
|
| 133 |
+
nl_input = st.text_input(
|
| 134 |
+
"Enter your equation in plain English:",
|
| 135 |
+
placeholder="e.g., the square of x plus two times x plus one"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
equation = ""
|
| 139 |
+
if nl_input:
|
| 140 |
+
equation = convert_nl_to_equation(nl_input)
|
| 141 |
+
if equation:
|
| 142 |
+
st.success(f"Converted to equation: {equation}")
|
| 143 |
+
else:
|
| 144 |
+
st.error("Failed to convert input")
|
| 145 |
+
|
| 146 |
+
# Direct equation input (fallback or primary)
|
| 147 |
+
equation = st.text_input(
|
| 148 |
+
"Or enter your equation directly:",
|
| 149 |
+
value=equation,
|
| 150 |
+
placeholder="e.g., x^2 + 2*x + 1"
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
# Plot settings
|
| 154 |
+
with st.expander("⚙ Plot Settings"):
|
| 155 |
+
col_a, col_b = st.columns(2)
|
| 156 |
+
with col_a:
|
| 157 |
+
x_min = st.number_input("X-axis minimum", value=-10.0)
|
| 158 |
+
with col_b:
|
| 159 |
+
x_max = st.number_input("X-axis maximum", value=10.0)
|
| 160 |
+
points = st.slider("Number of points", 100, 2000, 1000)
|
| 161 |
+
|
| 162 |
+
# Process and plot
|
| 163 |
+
if equation:
|
| 164 |
+
f, expr = parse_and_validate_equation(equation)
|
| 165 |
+
if f and expr:
|
| 166 |
+
fig = plot_equation(f, expr, (x_min, x_max), points)
|
| 167 |
+
if fig:
|
| 168 |
+
st.pyplot(fig)
|
| 169 |
+
st.markdown(get_download_link(fig), unsafe_allow_html=True)
|
| 170 |
+
if equation not in [h['equation'] for h in st.session_state.history]:
|
| 171 |
+
st.session_state.history.append({
|
| 172 |
+
'equation': equation,
|
| 173 |
+
'timestamp': datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
+
with col2:
|
| 177 |
+
st.subheader("📚 Example Equations")
|
| 178 |
+
examples = [
|
| 179 |
+
"x^2 + 2*x + 1",
|
| 180 |
+
"sin(x) + cos(x)",
|
| 181 |
+
"exp(-x^2)",
|
| 182 |
+
"x^3 - 4*x",
|
| 183 |
+
"tan(x)",
|
| 184 |
+
"log(abs(x))"
|
| 185 |
+
]
|
| 186 |
+
for ex in examples:
|
| 187 |
+
if st.button(ex):
|
| 188 |
+
st.experimental_set_query_params(equation=ex)
|
| 189 |
+
|
| 190 |
+
st.subheader("📖 Recent Equations")
|
| 191 |
+
for item in reversed(st.session_state.history[-5:]):
|
| 192 |
+
st.text(f"{item['equation']}")
|
| 193 |
+
st.caption(f"Plotted on: {item['timestamp']}")
|
| 194 |
+
|
| 195 |
+
with st.expander("ℹ How to use Equation2Graph"):
|
| 196 |
+
st.markdown("""
|
| 197 |
+
### Instructions:
|
| 198 |
+
1. Describe or type your equation
|
| 199 |
+
2. The graph updates automatically
|
| 200 |
+
3. Adjust plot settings if needed
|
| 201 |
+
4. Download the graph as PNG
|
| 202 |
+
|
| 203 |
+
### Natural Language Support:
|
| 204 |
+
- Try: "the square of x plus two times x"
|
| 205 |
+
- You can still type equations like: x^2 + 2*x
|
| 206 |
+
|
| 207 |
+
### Supported Math Functions:
|
| 208 |
+
- Basic: +, -, *, /, ^
|
| 209 |
+
- Trig: sin(x), cos(x), tan(x)
|
| 210 |
+
- Exponential/log: exp(x), log(x)
|
| 211 |
+
""")
|
| 212 |
|
| 213 |
+
# Footer
|
| 214 |
+
st.markdown("---")
|
| 215 |
+
st.markdown("Equation2Graph | Now with 🧠 AI-powered equation parser | Made by webwhiz")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|