File size: 28,379 Bytes
9ce984a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
"""
Title: Denoising Diffusion Probabilistic Model
Author: [A_K_Nain](https://twitter.com/A_K_Nain)
Date created: 2022/11/30
Last modified: 2022/12/07
Description: Generating images of flowers with denoising diffusion probabilistic models.
"""

"""
## Introduction

Generative modeling experienced tremendous growth in the last five years. Models like
VAEs, GANs, and flow-based models proved to be a great success in generating
high-quality content, especially images. Diffusion models are a new type of generative
model that has proven to be better than previous approaches.

Diffusion models are inspired by non-equilibrium thermodynamics, and they learn to
generate by denoising. Learning by denoising consists of two processes,
each of which is a Markov Chain. These are:

1. The forward process: In the forward process, we slowly add random noise to the data
in a series of time steps `(t1, t2, ..., tn )`. Samples at the current time step are
drawn from a Gaussian distribution where the mean of the distribution is conditioned
on the sample at the previous time step, and the variance of the distribution follows
a fixed schedule. At the end of the forward process, the samples end up with a pure
noise distribution.

2. The reverse process: During the reverse process, we try to undo the added noise at
every time step. We start with the pure noise distribution (the last step of the
forward process) and try to denoise the samples in the backward direction
`(tn, tn-1, ..., t1)`.

We implement the [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
paper or DDPMs for short in this code example. It was the first paper demonstrating
the use of diffusion models for generating high-quality images. The authors proved
that a certain parameterization of diffusion models reveals an equivalence with
denoising score matching over multiple noise levels during training and with annealed
Langevin dynamics during sampling that generates the best quality results.

This paper replicates both the Markov chains (forward process and reverse process)
involved in the diffusion process but for images. The forward process is fixed and
gradually adds Gaussian noise to the images according to a fixed variance schedule
denoted by beta in the paper. This is what the diffusion process looks like in case
of images: (image -> noise::noise -> image)

![diffusion process gif](https://imgur.com/Yn7tho9.gif)


The paper describes two algorithms, one for training the model, and the other for
sampling from the trained model. Training is performed by optimizing the usual
variational bound on negative log-likelihood. The objective function is further
simplified, and the network is treated as a noise prediction network. Once optimized,
we can sample from the network to generate new images from noise samples. Here is an
overview of both algorithms as presented in the paper:

![ddpms](https://i.imgur.com/S7KH5hZ.png)


**Note:** DDPM is just one way of implementing a diffusion model. Also, the sampling
algorithm in the DDPM replicates the complete Markov chain. Hence, it's slow in
generating new samples compared to other generative models like GANs. Lots of research
efforts have been made to address this issue. One such example is Denoising Diffusion
Implicit Models, or DDIM for short, where the authors replaced the Markov chain with a
non-Markovian process to sample faster. You can find the code example for DDIM
[here](https://keras.io/examples/generative/ddim/)

Implementing a DDPM model is simple. We define a model that takes
two inputs: Images and the randomly sampled time steps. At each training step, we
perform the following operations to train our model:

1. Sample random noise to be added to the inputs.
2. Apply the forward process to diffuse the inputs with the sampled noise.
3. Your model takes these noisy samples as inputs and outputs the noise
prediction for each time step.
4. Given true noise and predicted noise, we calculate the loss values
5. We then calculate the gradients and update the model weights.

Given that our model knows how to denoise a noisy sample at a given time step,
we can leverage this idea to generate new samples, starting from a pure noise
distribution.
"""

"""
## Setup
"""

import math
import numpy as np
import matplotlib.pyplot as plt

# Requires TensorFlow >=2.11 for the GroupNormalization layer.
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
import tensorflow_datasets as tfds

"""
## Hyperparameters
"""

batch_size = 32
num_epochs = 1  # Just for the sake of demonstration
total_timesteps = 1000
norm_groups = 8  # Number of groups used in GroupNormalization layer
learning_rate = 2e-4

img_size = 64
img_channels = 3
clip_min = -1.0
clip_max = 1.0

first_conv_channels = 64
channel_multiplier = [1, 2, 4, 8]
widths = [first_conv_channels * mult for mult in channel_multiplier]
has_attention = [False, False, True, True]
num_res_blocks = 2  # Number of residual blocks

dataset_name = "oxford_flowers102"
splits = ["train"]


"""
## Dataset

We use the [Oxford Flowers 102](https://www.tensorflow.org/datasets/catalog/oxford_flowers102)
dataset for generating images of flowers. In terms of preprocessing, we use center
cropping for resizing the images to the desired image size, and we rescale the pixel
values in the range `[-1.0, 1.0]`. This is in line with the range of the pixel values that
was applied by the authors of the [DDPMs paper](https://arxiv.org/abs/2006.11239). For
augmenting training data, we randomly flip the images left/right.
"""


# Load the dataset
(ds,) = tfds.load(dataset_name, split=splits, with_info=False, shuffle_files=True)


def augment(img):
    """Flips an image left/right randomly."""
    return tf.image.random_flip_left_right(img)


def resize_and_rescale(img, size):
    """Resize the image to the desired size first and then
    rescale the pixel values in the range [-1.0, 1.0].

    Args:
        img: Image tensor
        size: Desired image size for resizing
    Returns:
        Resized and rescaled image tensor
    """

    height = tf.shape(img)[0]
    width = tf.shape(img)[1]
    crop_size = tf.minimum(height, width)

    img = tf.image.crop_to_bounding_box(
        img,
        (height - crop_size) // 2,
        (width - crop_size) // 2,
        crop_size,
        crop_size,
    )

    # Resize
    img = tf.cast(img, dtype=tf.float32)
    img = tf.image.resize(img, size=size, antialias=True)

    # Rescale the pixel values
    img = img / 127.5 - 1.0
    img = tf.clip_by_value(img, clip_min, clip_max)
    return img


def train_preprocessing(x):
    img = x["image"]
    img = resize_and_rescale(img, size=(img_size, img_size))
    img = augment(img)
    return img


train_ds = (
    ds.map(train_preprocessing, num_parallel_calls=tf.data.AUTOTUNE)
    .batch(batch_size, drop_remainder=True)
    .shuffle(batch_size * 2)
    .prefetch(tf.data.AUTOTUNE)
)


"""
## Gaussian diffusion utilities

We define the forward process and the reverse process
as a separate utility. Most of the code in this utility has been borrowed
from the original implementation with some slight modifications.
"""


class GaussianDiffusion:
    """Gaussian diffusion utility.

    Args:
        beta_start: Start value of the scheduled variance
        beta_end: End value of the scheduled variance
        timesteps: Number of time steps in the forward process
    """

    def __init__(
        self,
        beta_start=1e-4,
        beta_end=0.02,
        timesteps=1000,
        clip_min=-1.0,
        clip_max=1.0,
    ):
        self.beta_start = beta_start
        self.beta_end = beta_end
        self.timesteps = timesteps
        self.clip_min = clip_min
        self.clip_max = clip_max

        # Define the linear variance schedule
        self.betas = betas = np.linspace(
            beta_start,
            beta_end,
            timesteps,
            dtype=np.float64,  # Using float64 for better precision
        )
        self.num_timesteps = int(timesteps)

        alphas = 1.0 - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1.0, alphas_cumprod[:-1])

        self.betas = tf.constant(betas, dtype=tf.float32)
        self.alphas_cumprod = tf.constant(alphas_cumprod, dtype=tf.float32)
        self.alphas_cumprod_prev = tf.constant(alphas_cumprod_prev, dtype=tf.float32)

        # Calculations for diffusion q(x_t | x_{t-1}) and others
        self.sqrt_alphas_cumprod = tf.constant(
            np.sqrt(alphas_cumprod), dtype=tf.float32
        )

        self.sqrt_one_minus_alphas_cumprod = tf.constant(
            np.sqrt(1.0 - alphas_cumprod), dtype=tf.float32
        )

        self.log_one_minus_alphas_cumprod = tf.constant(
            np.log(1.0 - alphas_cumprod), dtype=tf.float32
        )

        self.sqrt_recip_alphas_cumprod = tf.constant(
            np.sqrt(1.0 / alphas_cumprod), dtype=tf.float32
        )
        self.sqrt_recipm1_alphas_cumprod = tf.constant(
            np.sqrt(1.0 / alphas_cumprod - 1), dtype=tf.float32
        )

        # Calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = (
            betas * (1.0 - alphas_cumprod_prev) / (1.0 - alphas_cumprod)
        )
        self.posterior_variance = tf.constant(posterior_variance, dtype=tf.float32)

        # Log calculation clipped because the posterior variance is 0 at the beginning
        # of the diffusion chain
        self.posterior_log_variance_clipped = tf.constant(
            np.log(np.maximum(posterior_variance, 1e-20)), dtype=tf.float32
        )

        self.posterior_mean_coef1 = tf.constant(
            betas * np.sqrt(alphas_cumprod_prev) / (1.0 - alphas_cumprod),
            dtype=tf.float32,
        )

        self.posterior_mean_coef2 = tf.constant(
            (1.0 - alphas_cumprod_prev) * np.sqrt(alphas) / (1.0 - alphas_cumprod),
            dtype=tf.float32,
        )

    def _extract(self, a, t, x_shape):
        """Extract some coefficients at specified timesteps,
        then reshape to [batch_size, 1, 1, 1, 1, ...] for broadcasting purposes.

        Args:
            a: Tensor to extract from
            t: Timestep for which the coefficients are to be extracted
            x_shape: Shape of the current batched samples
        """
        batch_size = x_shape[0]
        out = tf.gather(a, t)
        return tf.reshape(out, [batch_size, 1, 1, 1])

    def q_mean_variance(self, x_start, t):
        """Extracts the mean, and the variance at current timestep.

        Args:
            x_start: Initial sample (before the first diffusion step)
            t: Current timestep
        """
        x_start_shape = tf.shape(x_start)
        mean = self._extract(self.sqrt_alphas_cumprod, t, x_start_shape) * x_start
        variance = self._extract(1.0 - self.alphas_cumprod, t, x_start_shape)
        log_variance = self._extract(
            self.log_one_minus_alphas_cumprod, t, x_start_shape
        )
        return mean, variance, log_variance

    def q_sample(self, x_start, t, noise):
        """Diffuse the data.

        Args:
            x_start: Initial sample (before the first diffusion step)
            t: Current timestep
            noise: Gaussian noise to be added at the current timestep
        Returns:
            Diffused samples at timestep `t`
        """
        x_start_shape = tf.shape(x_start)
        return (
            self._extract(self.sqrt_alphas_cumprod, t, tf.shape(x_start)) * x_start
            + self._extract(self.sqrt_one_minus_alphas_cumprod, t, x_start_shape)
            * noise
        )

    def predict_start_from_noise(self, x_t, t, noise):
        x_t_shape = tf.shape(x_t)
        return (
            self._extract(self.sqrt_recip_alphas_cumprod, t, x_t_shape) * x_t
            - self._extract(self.sqrt_recipm1_alphas_cumprod, t, x_t_shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        """Compute the mean and variance of the diffusion
        posterior q(x_{t-1} | x_t, x_0).

        Args:
            x_start: Stating point(sample) for the posterior computation
            x_t: Sample at timestep `t`
            t: Current timestep
        Returns:
            Posterior mean and variance at current timestep
        """

        x_t_shape = tf.shape(x_t)
        posterior_mean = (
            self._extract(self.posterior_mean_coef1, t, x_t_shape) * x_start
            + self._extract(self.posterior_mean_coef2, t, x_t_shape) * x_t
        )
        posterior_variance = self._extract(self.posterior_variance, t, x_t_shape)
        posterior_log_variance_clipped = self._extract(
            self.posterior_log_variance_clipped, t, x_t_shape
        )
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, pred_noise, x, t, clip_denoised=True):
        x_recon = self.predict_start_from_noise(x, t=t, noise=pred_noise)
        if clip_denoised:
            x_recon = tf.clip_by_value(x_recon, self.clip_min, self.clip_max)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(
            x_start=x_recon, x_t=x, t=t
        )
        return model_mean, posterior_variance, posterior_log_variance

    def p_sample(self, pred_noise, x, t, clip_denoised=True):
        """Sample from the diffusion model.

        Args:
            pred_noise: Noise predicted by the diffusion model
            x: Samples at a given timestep for which the noise was predicted
            t: Current timestep
            clip_denoised (bool): Whether to clip the predicted noise
                within the specified range or not.
        """
        model_mean, _, model_log_variance = self.p_mean_variance(
            pred_noise, x=x, t=t, clip_denoised=clip_denoised
        )
        noise = tf.random.normal(shape=x.shape, dtype=x.dtype)
        # No noise when t == 0
        nonzero_mask = tf.reshape(
            1 - tf.cast(tf.equal(t, 0), tf.float32), [tf.shape(x)[0], 1, 1, 1]
        )
        return model_mean + nonzero_mask * tf.exp(0.5 * model_log_variance) * noise


"""
## Network architecture

U-Net, originally developed for semantic segmentation, is an architecture that is
widely used for implementing diffusion models but with some slight modifications:

1. The network accepts two inputs: Image and time step
2. Self-attention between the convolution blocks once we reach a specific resolution
(16x16 in the paper)
3. Group Normalization instead of weight normalization

We implement most of the things as used in the original paper. We use the
`swish` activation function throughout the network. We use the variance scaling
kernel initializer.

The only difference here is the number of groups used for the
`GroupNormalization` layer. For the flowers dataset,
we found that a value of `groups=8` produces better results
compared to the default value of `groups=32`. Dropout is optional and should be
used where chances of over fitting is high. In the paper, the authors used dropout
only when training on CIFAR10.
"""


# Kernel initializer to use
def kernel_init(scale):
    scale = max(scale, 1e-10)
    return keras.initializers.VarianceScaling(
        scale, mode="fan_avg", distribution="uniform"
    )


class AttentionBlock(layers.Layer):
    """Applies self-attention.

    Args:
        units: Number of units in the dense layers
        groups: Number of groups to be used for GroupNormalization layer
    """

    def __init__(self, units, groups=8, **kwargs):
        self.units = units
        self.groups = groups
        super().__init__(**kwargs)

        self.norm = layers.GroupNormalization(groups=groups)
        self.query = layers.Dense(units, kernel_initializer=kernel_init(1.0))
        self.key = layers.Dense(units, kernel_initializer=kernel_init(1.0))
        self.value = layers.Dense(units, kernel_initializer=kernel_init(1.0))
        self.proj = layers.Dense(units, kernel_initializer=kernel_init(0.0))

    def call(self, inputs):
        batch_size = tf.shape(inputs)[0]
        height = tf.shape(inputs)[1]
        width = tf.shape(inputs)[2]
        scale = tf.cast(self.units, tf.float32) ** (-0.5)

        inputs = self.norm(inputs)
        q = self.query(inputs)
        k = self.key(inputs)
        v = self.value(inputs)

        attn_score = tf.einsum("bhwc, bHWc->bhwHW", q, k) * scale
        attn_score = tf.reshape(attn_score, [batch_size, height, width, height * width])

        attn_score = tf.nn.softmax(attn_score, -1)
        attn_score = tf.reshape(attn_score, [batch_size, height, width, height, width])

        proj = tf.einsum("bhwHW,bHWc->bhwc", attn_score, v)
        proj = self.proj(proj)
        return inputs + proj


class TimeEmbedding(layers.Layer):
    def __init__(self, dim, **kwargs):
        super().__init__(**kwargs)
        self.dim = dim
        self.half_dim = dim // 2
        self.emb = math.log(10000) / (self.half_dim - 1)
        self.emb = tf.exp(tf.range(self.half_dim, dtype=tf.float32) * -self.emb)

    def call(self, inputs):
        inputs = tf.cast(inputs, dtype=tf.float32)
        emb = inputs[:, None] * self.emb[None, :]
        emb = tf.concat([tf.sin(emb), tf.cos(emb)], axis=-1)
        return emb


def ResidualBlock(width, groups=8, activation_fn=keras.activations.swish):
    def apply(inputs):
        x, t = inputs
        input_width = x.shape[3]

        if input_width == width:
            residual = x
        else:
            residual = layers.Conv2D(
                width, kernel_size=1, kernel_initializer=kernel_init(1.0)
            )(x)

        temb = activation_fn(t)
        temb = layers.Dense(width, kernel_initializer=kernel_init(1.0))(temb)[
            :, None, None, :
        ]

        x = layers.GroupNormalization(groups=groups)(x)
        x = activation_fn(x)
        x = layers.Conv2D(
            width, kernel_size=3, padding="same", kernel_initializer=kernel_init(1.0)
        )(x)

        x = layers.Add()([x, temb])
        x = layers.GroupNormalization(groups=groups)(x)
        x = activation_fn(x)

        x = layers.Conv2D(
            width, kernel_size=3, padding="same", kernel_initializer=kernel_init(0.0)
        )(x)
        x = layers.Add()([x, residual])
        return x

    return apply


def DownSample(width):
    def apply(x):
        x = layers.Conv2D(
            width,
            kernel_size=3,
            strides=2,
            padding="same",
            kernel_initializer=kernel_init(1.0),
        )(x)
        return x

    return apply


def UpSample(width, interpolation="nearest"):
    def apply(x):
        x = layers.UpSampling2D(size=2, interpolation=interpolation)(x)
        x = layers.Conv2D(
            width, kernel_size=3, padding="same", kernel_initializer=kernel_init(1.0)
        )(x)
        return x

    return apply


def TimeMLP(units, activation_fn=keras.activations.swish):
    def apply(inputs):
        temb = layers.Dense(
            units, activation=activation_fn, kernel_initializer=kernel_init(1.0)
        )(inputs)
        temb = layers.Dense(units, kernel_initializer=kernel_init(1.0))(temb)
        return temb

    return apply


def build_model(
    img_size,
    img_channels,
    widths,
    has_attention,
    num_res_blocks=2,
    norm_groups=8,
    interpolation="nearest",
    activation_fn=keras.activations.swish,
):
    image_input = layers.Input(
        shape=(img_size, img_size, img_channels), name="image_input"
    )
    time_input = keras.Input(shape=(), dtype=tf.int64, name="time_input")

    x = layers.Conv2D(
        first_conv_channels,
        kernel_size=(3, 3),
        padding="same",
        kernel_initializer=kernel_init(1.0),
    )(image_input)

    temb = TimeEmbedding(dim=first_conv_channels * 4)(time_input)
    temb = TimeMLP(units=first_conv_channels * 4, activation_fn=activation_fn)(temb)

    skips = [x]

    # DownBlock
    for i in range(len(widths)):
        for _ in range(num_res_blocks):
            x = ResidualBlock(
                widths[i], groups=norm_groups, activation_fn=activation_fn
            )([x, temb])
            if has_attention[i]:
                x = AttentionBlock(widths[i], groups=norm_groups)(x)
            skips.append(x)

        if widths[i] != widths[-1]:
            x = DownSample(widths[i])(x)
            skips.append(x)

    # MiddleBlock
    x = ResidualBlock(widths[-1], groups=norm_groups, activation_fn=activation_fn)(
        [x, temb]
    )
    x = AttentionBlock(widths[-1], groups=norm_groups)(x)
    x = ResidualBlock(widths[-1], groups=norm_groups, activation_fn=activation_fn)(
        [x, temb]
    )

    # UpBlock
    for i in reversed(range(len(widths))):
        for _ in range(num_res_blocks + 1):
            x = layers.Concatenate(axis=-1)([x, skips.pop()])
            x = ResidualBlock(
                widths[i], groups=norm_groups, activation_fn=activation_fn
            )([x, temb])
            if has_attention[i]:
                x = AttentionBlock(widths[i], groups=norm_groups)(x)

        if i != 0:
            x = UpSample(widths[i], interpolation=interpolation)(x)

    # End block
    x = layers.GroupNormalization(groups=norm_groups)(x)
    x = activation_fn(x)
    x = layers.Conv2D(3, (3, 3), padding="same", kernel_initializer=kernel_init(0.0))(x)
    return keras.Model([image_input, time_input], x, name="unet")


"""
## Training

We follow the same setup for training the diffusion model as described
in the paper. We use `Adam` optimizer with a learning rate of `2e-4`.
We use EMA on model parameters with a decay factor of 0.999. We
treat our model as noise prediction network i.e. at every training step, we
input a batch of images and corresponding time steps to our UNet,
and the network outputs the noise as predictions.

The only difference is that we aren't using the Kernel Inception Distance (KID)
or Frechet Inception Distance (FID) for evaluating the quality of generated
samples during training. This is because both these metrics are compute heavy
and are skipped for the brevity of implementation.

**Note: ** We are using mean squared error as the loss function which is aligned with
the paper, and theoretically makes sense. In practice, though, it is also common to
use mean absolute error or Huber loss as the loss function.
"""


class DiffusionModel(keras.Model):
    def __init__(self, network, ema_network, timesteps, gdf_util, ema=0.999):
        super().__init__()
        self.network = network
        self.ema_network = ema_network
        self.timesteps = timesteps
        self.gdf_util = gdf_util
        self.ema = ema

    def train_step(self, images):
        # 1. Get the batch size
        batch_size = tf.shape(images)[0]

        # 2. Sample timesteps uniformly
        t = tf.random.uniform(
            minval=0, maxval=self.timesteps, shape=(batch_size,), dtype=tf.int64
        )

        with tf.GradientTape() as tape:
            # 3. Sample random noise to be added to the images in the batch
            noise = tf.random.normal(shape=tf.shape(images), dtype=images.dtype)

            # 4. Diffuse the images with noise
            images_t = self.gdf_util.q_sample(images, t, noise)

            # 5. Pass the diffused images and time steps to the network
            pred_noise = self.network([images_t, t], training=True)

            # 6. Calculate the loss
            loss = self.loss(noise, pred_noise)

        # 7. Get the gradients
        gradients = tape.gradient(loss, self.network.trainable_weights)

        # 8. Update the weights of the network
        self.optimizer.apply_gradients(zip(gradients, self.network.trainable_weights))

        # 9. Updates the weight values for the network with EMA weights
        for weight, ema_weight in zip(self.network.weights, self.ema_network.weights):
            ema_weight.assign(self.ema * ema_weight + (1 - self.ema) * weight)

        # 10. Return loss values
        return {"loss": loss}

    def generate_images(self, num_images=16):
        # 1. Randomly sample noise (starting point for reverse process)
        samples = tf.random.normal(
            shape=(num_images, img_size, img_size, img_channels), dtype=tf.float32
        )
        # 2. Sample from the model iteratively
        for t in reversed(range(0, self.timesteps)):
            tt = tf.cast(tf.fill(num_images, t), dtype=tf.int64)
            pred_noise = self.ema_network.predict(
                [samples, tt], verbose=0, batch_size=num_images
            )
            samples = self.gdf_util.p_sample(
                pred_noise, samples, tt, clip_denoised=True
            )
        # 3. Return generated samples
        return samples

    def plot_images(
        self, epoch=None, logs=None, num_rows=2, num_cols=8, figsize=(12, 5)
    ):
        """Utility to plot images using the diffusion model during training."""
        generated_samples = self.generate_images(num_images=num_rows * num_cols)
        generated_samples = (
            tf.clip_by_value(generated_samples * 127.5 + 127.5, 0.0, 255.0)
            .numpy()
            .astype(np.uint8)
        )

        _, ax = plt.subplots(num_rows, num_cols, figsize=figsize)
        for i, image in enumerate(generated_samples):
            if num_rows == 1:
                ax[i].imshow(image)
                ax[i].axis("off")
            else:
                ax[i // num_cols, i % num_cols].imshow(image)
                ax[i // num_cols, i % num_cols].axis("off")

        plt.tight_layout()
        plt.show()


# Build the unet model
network = build_model(
    img_size=img_size,
    img_channels=img_channels,
    widths=widths,
    has_attention=has_attention,
    num_res_blocks=num_res_blocks,
    norm_groups=norm_groups,
    activation_fn=keras.activations.swish,
)
ema_network = build_model(
    img_size=img_size,
    img_channels=img_channels,
    widths=widths,
    has_attention=has_attention,
    num_res_blocks=num_res_blocks,
    norm_groups=norm_groups,
    activation_fn=keras.activations.swish,
)
ema_network.set_weights(network.get_weights())  # Initially the weights are the same

# Get an instance of the Gaussian Diffusion utilities
gdf_util = GaussianDiffusion(timesteps=total_timesteps)

# Get the model
model = DiffusionModel(
    network=network,
    ema_network=ema_network,
    gdf_util=gdf_util,
    timesteps=total_timesteps,
)

# Compile the model
model.compile(
    loss=keras.losses.MeanSquaredError(),
    optimizer=keras.optimizers.Adam(learning_rate=learning_rate),
)

# Train the model
model.fit(
    train_ds,
    epochs=num_epochs,
    batch_size=batch_size,
    callbacks=[keras.callbacks.LambdaCallback(on_epoch_end=model.plot_images)],
)

"""
## Results

We trained this model for 800 epochs on a V100 GPU,
and each epoch took almost 8 seconds to finish. We load those weights
here, and we generate a few samples starting from pure noise.
"""

"""shell
curl -LO https://github.com/AakashKumarNain/ddpms/releases/download/v3.0.0/checkpoints.zip
unzip -qq checkpoints.zip
"""

# Load the model weights
model.ema_network.load_weights("checkpoints/diffusion_model_checkpoint")

# Generate and plot some samples
model.plot_images(num_rows=4, num_cols=8)


"""
## Conclusion

We successfully implemented and trained a diffusion model exactly in the same
fashion as implemented by the authors of the DDPMs paper. You can find the
original implementation [here](https://github.com/hojonathanho/diffusion).

There are a few things that you can try to improve the model:

1. Increasing the width of each block. A bigger model can learn to denoise
in fewer epochs, though you may have to take care of overfitting.

2. We implemented the linear schedule for variance scheduling. You can implement
other schemes like cosine scheduling and compare the performance.
"""

"""
## References

1. [Denoising Diffusion Probabilistic Models](https://arxiv.org/abs/2006.11239)
2. [Author's implementation](https://github.com/hojonathanho/diffusion)
3. [A deep dive into DDPMs](https://magic-with-latents.github.io/latent/posts/ddpms/part3/)
4. [Denoising Diffusion Implicit Models](https://keras.io/examples/generative/ddim/)
5. [Annotated Diffusion Model](https://huggingface.co/blog/annotated-diffusion)
6. [AIAIART](https://www.youtube.com/watch?v=XTs7M6TSK9I&t=14s)
"""