Spaces:
Running
Running
File size: 6,960 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
"""
Title: Density estimation using Real NVP
Authors: [Mandolini Giorgio Maria](https://www.linkedin.com/in/giorgio-maria-mandolini-a2a1b71b4/), [Sanna Daniele](https://www.linkedin.com/in/daniele-sanna-338629bb/), [Zannini Quirini Giorgio](https://www.linkedin.com/in/giorgio-zannini-quirini-16ab181a0/)
Date created: 2020/08/10
Last modified: 2020/08/10
Description: Estimating the density distribution of the "double moon" dataset.
Accelerator: GPU
"""
"""
## Introduction
The aim of this work is to map a simple distribution - which is easy to sample
and whose density is simple to estimate - to a more complex one learned from the data.
This kind of generative model is also known as "normalizing flow".
In order to do this, the model is trained via the maximum
likelihood principle, using the "change of variable" formula.
We will use an affine coupling function. We create it such that its inverse, as well as
the determinant of the Jacobian, are easy to obtain (more details in the referenced paper).
**Requirements:**
* Tensorflow 2.9.1
* Tensorflow probability 0.17.0
**Reference:**
[Density estimation using Real NVP](https://arxiv.org/abs/1605.08803)
"""
"""
## Setup
"""
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras import regularizers
from sklearn.datasets import make_moons
import numpy as np
import matplotlib.pyplot as plt
import tensorflow_probability as tfp
"""
## Load the data
"""
data = make_moons(3000, noise=0.05)[0].astype("float32")
norm = layers.Normalization()
norm.adapt(data)
normalized_data = norm(data)
"""
## Affine coupling layer
"""
# Creating a custom layer with keras API.
output_dim = 256
reg = 0.01
def Coupling(input_shape):
input = keras.layers.Input(shape=input_shape)
t_layer_1 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(input)
t_layer_2 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(t_layer_1)
t_layer_3 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(t_layer_2)
t_layer_4 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(t_layer_3)
t_layer_5 = keras.layers.Dense(
input_shape, activation="linear", kernel_regularizer=regularizers.l2(reg)
)(t_layer_4)
s_layer_1 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(input)
s_layer_2 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(s_layer_1)
s_layer_3 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(s_layer_2)
s_layer_4 = keras.layers.Dense(
output_dim, activation="relu", kernel_regularizer=regularizers.l2(reg)
)(s_layer_3)
s_layer_5 = keras.layers.Dense(
input_shape, activation="tanh", kernel_regularizer=regularizers.l2(reg)
)(s_layer_4)
return keras.Model(inputs=input, outputs=[s_layer_5, t_layer_5])
"""
## Real NVP
"""
class RealNVP(keras.Model):
def __init__(self, num_coupling_layers):
super().__init__()
self.num_coupling_layers = num_coupling_layers
# Distribution of the latent space.
self.distribution = tfp.distributions.MultivariateNormalDiag(
loc=[0.0, 0.0], scale_diag=[1.0, 1.0]
)
self.masks = np.array(
[[0, 1], [1, 0]] * (num_coupling_layers // 2), dtype="float32"
)
self.loss_tracker = keras.metrics.Mean(name="loss")
self.layers_list = [Coupling(2) for i in range(num_coupling_layers)]
@property
def metrics(self):
"""List of the model's metrics.
We make sure the loss tracker is listed as part of `model.metrics`
so that `fit()` and `evaluate()` are able to `reset()` the loss tracker
at the start of each epoch and at the start of an `evaluate()` call.
"""
return [self.loss_tracker]
def call(self, x, training=True):
log_det_inv = 0
direction = 1
if training:
direction = -1
for i in range(self.num_coupling_layers)[::direction]:
x_masked = x * self.masks[i]
reversed_mask = 1 - self.masks[i]
s, t = self.layers_list[i](x_masked)
s *= reversed_mask
t *= reversed_mask
gate = (direction - 1) / 2
x = (
reversed_mask
* (x * tf.exp(direction * s) + direction * t * tf.exp(gate * s))
+ x_masked
)
log_det_inv += gate * tf.reduce_sum(s, [1])
return x, log_det_inv
# Log likelihood of the normal distribution plus the log determinant of the jacobian.
def log_loss(self, x):
y, logdet = self(x)
log_likelihood = self.distribution.log_prob(y) + logdet
return -tf.reduce_mean(log_likelihood)
def train_step(self, data):
with tf.GradientTape() as tape:
loss = self.log_loss(data)
g = tape.gradient(loss, self.trainable_variables)
self.optimizer.apply_gradients(zip(g, self.trainable_variables))
self.loss_tracker.update_state(loss)
return {"loss": self.loss_tracker.result()}
def test_step(self, data):
loss = self.log_loss(data)
self.loss_tracker.update_state(loss)
return {"loss": self.loss_tracker.result()}
"""
## Model training
"""
model = RealNVP(num_coupling_layers=6)
model.compile(optimizer=keras.optimizers.Adam(learning_rate=0.0001))
history = model.fit(
normalized_data, batch_size=256, epochs=300, verbose=2, validation_split=0.2
)
"""
## Performance evaluation
"""
plt.figure(figsize=(15, 10))
plt.plot(history.history["loss"])
plt.plot(history.history["val_loss"])
plt.title("model loss")
plt.legend(["train", "validation"], loc="upper right")
plt.ylabel("loss")
plt.xlabel("epoch")
# From data to latent space.
z, _ = model(normalized_data)
# From latent space to data.
samples = model.distribution.sample(3000)
x, _ = model.predict(samples)
f, axes = plt.subplots(2, 2)
f.set_size_inches(20, 15)
axes[0, 0].scatter(normalized_data[:, 0], normalized_data[:, 1], color="r")
axes[0, 0].set(title="Inference data space X", xlabel="x", ylabel="y")
axes[0, 1].scatter(z[:, 0], z[:, 1], color="r")
axes[0, 1].set(title="Inference latent space Z", xlabel="x", ylabel="y")
axes[0, 1].set_xlim([-3.5, 4])
axes[0, 1].set_ylim([-4, 4])
axes[1, 0].scatter(samples[:, 0], samples[:, 1], color="g")
axes[1, 0].set(title="Generated latent space Z", xlabel="x", ylabel="y")
axes[1, 1].scatter(x[:, 0], x[:, 1], color="g")
axes[1, 1].set(title="Generated data space X", label="x", ylabel="y")
axes[1, 1].set_xlim([-2, 2])
axes[1, 1].set_ylim([-2, 2])
|