Spaces:
Running
Running
File size: 14,317 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 |
"""
Title: Deep Deterministic Policy Gradient (DDPG)
Author: [amifunny](https://github.com/amifunny)
Date created: 2020/06/04
Last modified: 2024/03/23
Description: Implementing DDPG algorithm on the Inverted Pendulum Problem.
Accelerator: None
"""
"""
## Introduction
**Deep Deterministic Policy Gradient (DDPG)** is a model-free off-policy algorithm for
learning continuous actions.
It combines ideas from DPG (Deterministic Policy Gradient) and DQN (Deep Q-Network).
It uses Experience Replay and slow-learning target networks from DQN, and it is based on
DPG, which can operate over continuous action spaces.
This tutorial closely follow this paper -
[Continuous control with deep reinforcement learning](https://arxiv.org/abs/1509.02971)
## Problem
We are trying to solve the classic **Inverted Pendulum** control problem.
In this setting, we can take only two actions: swing left or swing right.
What make this problem challenging for Q-Learning Algorithms is that actions
are **continuous** instead of being **discrete**. That is, instead of using two
discrete actions like `-1` or `+1`, we have to select from infinite actions
ranging from `-2` to `+2`.
## Quick theory
Just like the Actor-Critic method, we have two networks:
1. Actor - It proposes an action given a state.
2. Critic - It predicts if the action is good (positive value) or bad (negative value)
given a state and an action.
DDPG uses two more techniques not present in the original DQN:
**First, it uses two Target networks.**
**Why?** Because it add stability to training. In short, we are learning from estimated
targets and Target networks are updated slowly, hence keeping our estimated targets
stable.
Conceptually, this is like saying, "I have an idea of how to play this well,
I'm going to try it out for a bit until I find something better",
as opposed to saying "I'm going to re-learn how to play this entire game after every
move".
See this [StackOverflow answer](https://stackoverflow.com/a/54238556/13475679).
**Second, it uses Experience Replay.**
We store list of tuples `(state, action, reward, next_state)`, and instead of
learning only from recent experience, we learn from sampling all of our experience
accumulated so far.
Now, let's see how is it implemented.
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
from keras import layers
import tensorflow as tf
import gymnasium as gym
import numpy as np
import matplotlib.pyplot as plt
"""
We use [Gymnasium](https://gymnasium.farama.org/) to create the environment.
We will use the `upper_bound` parameter to scale our actions later.
"""
# Specify the `render_mode` parameter to show the attempts of the agent in a pop up window.
env = gym.make("Pendulum-v1") # , render_mode="human")
num_states = env.observation_space.shape[0]
print("Size of State Space -> {}".format(num_states))
num_actions = env.action_space.shape[0]
print("Size of Action Space -> {}".format(num_actions))
upper_bound = env.action_space.high[0]
lower_bound = env.action_space.low[0]
print("Max Value of Action -> {}".format(upper_bound))
print("Min Value of Action -> {}".format(lower_bound))
"""
To implement better exploration by the Actor network, we use noisy perturbations,
specifically
an **Ornstein-Uhlenbeck process** for generating noise, as described in the paper.
It samples noise from a correlated normal distribution.
"""
class OUActionNoise:
def __init__(self, mean, std_deviation, theta=0.15, dt=1e-2, x_initial=None):
self.theta = theta
self.mean = mean
self.std_dev = std_deviation
self.dt = dt
self.x_initial = x_initial
self.reset()
def __call__(self):
# Formula taken from https://www.wikipedia.org/wiki/Ornstein-Uhlenbeck_process
x = (
self.x_prev
+ self.theta * (self.mean - self.x_prev) * self.dt
+ self.std_dev * np.sqrt(self.dt) * np.random.normal(size=self.mean.shape)
)
# Store x into x_prev
# Makes next noise dependent on current one
self.x_prev = x
return x
def reset(self):
if self.x_initial is not None:
self.x_prev = self.x_initial
else:
self.x_prev = np.zeros_like(self.mean)
"""
The `Buffer` class implements Experience Replay.
---

---
**Critic loss** - Mean Squared Error of `y - Q(s, a)`
where `y` is the expected return as seen by the Target network,
and `Q(s, a)` is action value predicted by the Critic network. `y` is a moving target
that the critic model tries to achieve; we make this target
stable by updating the Target model slowly.
**Actor loss** - This is computed using the mean of the value given by the Critic network
for the actions taken by the Actor network. We seek to maximize this quantity.
Hence we update the Actor network so that it produces actions that get
the maximum predicted value as seen by the Critic, for a given state.
"""
class Buffer:
def __init__(self, buffer_capacity=100000, batch_size=64):
# Number of "experiences" to store at max
self.buffer_capacity = buffer_capacity
# Num of tuples to train on.
self.batch_size = batch_size
# Its tells us num of times record() was called.
self.buffer_counter = 0
# Instead of list of tuples as the exp.replay concept go
# We use different np.arrays for each tuple element
self.state_buffer = np.zeros((self.buffer_capacity, num_states))
self.action_buffer = np.zeros((self.buffer_capacity, num_actions))
self.reward_buffer = np.zeros((self.buffer_capacity, 1))
self.next_state_buffer = np.zeros((self.buffer_capacity, num_states))
# Takes (s,a,r,s') observation tuple as input
def record(self, obs_tuple):
# Set index to zero if buffer_capacity is exceeded,
# replacing old records
index = self.buffer_counter % self.buffer_capacity
self.state_buffer[index] = obs_tuple[0]
self.action_buffer[index] = obs_tuple[1]
self.reward_buffer[index] = obs_tuple[2]
self.next_state_buffer[index] = obs_tuple[3]
self.buffer_counter += 1
# Eager execution is turned on by default in TensorFlow 2. Decorating with tf.function allows
# TensorFlow to build a static graph out of the logic and computations in our function.
# This provides a large speed up for blocks of code that contain many small TensorFlow operations such as this one.
@tf.function
def update(
self,
state_batch,
action_batch,
reward_batch,
next_state_batch,
):
# Training and updating Actor & Critic networks.
# See Pseudo Code.
with tf.GradientTape() as tape:
target_actions = target_actor(next_state_batch, training=True)
y = reward_batch + gamma * target_critic(
[next_state_batch, target_actions], training=True
)
critic_value = critic_model([state_batch, action_batch], training=True)
critic_loss = keras.ops.mean(keras.ops.square(y - critic_value))
critic_grad = tape.gradient(critic_loss, critic_model.trainable_variables)
critic_optimizer.apply_gradients(
zip(critic_grad, critic_model.trainable_variables)
)
with tf.GradientTape() as tape:
actions = actor_model(state_batch, training=True)
critic_value = critic_model([state_batch, actions], training=True)
# Used `-value` as we want to maximize the value given
# by the critic for our actions
actor_loss = -keras.ops.mean(critic_value)
actor_grad = tape.gradient(actor_loss, actor_model.trainable_variables)
actor_optimizer.apply_gradients(
zip(actor_grad, actor_model.trainable_variables)
)
# We compute the loss and update parameters
def learn(self):
# Get sampling range
record_range = min(self.buffer_counter, self.buffer_capacity)
# Randomly sample indices
batch_indices = np.random.choice(record_range, self.batch_size)
# Convert to tensors
state_batch = keras.ops.convert_to_tensor(self.state_buffer[batch_indices])
action_batch = keras.ops.convert_to_tensor(self.action_buffer[batch_indices])
reward_batch = keras.ops.convert_to_tensor(self.reward_buffer[batch_indices])
reward_batch = keras.ops.cast(reward_batch, dtype="float32")
next_state_batch = keras.ops.convert_to_tensor(
self.next_state_buffer[batch_indices]
)
self.update(state_batch, action_batch, reward_batch, next_state_batch)
# This update target parameters slowly
# Based on rate `tau`, which is much less than one.
def update_target(target, original, tau):
target_weights = target.get_weights()
original_weights = original.get_weights()
for i in range(len(target_weights)):
target_weights[i] = original_weights[i] * tau + target_weights[i] * (1 - tau)
target.set_weights(target_weights)
"""
Here we define the Actor and Critic networks. These are basic Dense models
with `ReLU` activation.
Note: We need the initialization for last layer of the Actor to be between
`-0.003` and `0.003` as this prevents us from getting `1` or `-1` output values in
the initial stages, which would squash our gradients to zero,
as we use the `tanh` activation.
"""
def get_actor():
# Initialize weights between -3e-3 and 3-e3
last_init = keras.initializers.RandomUniform(minval=-0.003, maxval=0.003)
inputs = layers.Input(shape=(num_states,))
out = layers.Dense(256, activation="relu")(inputs)
out = layers.Dense(256, activation="relu")(out)
outputs = layers.Dense(1, activation="tanh", kernel_initializer=last_init)(out)
# Our upper bound is 2.0 for Pendulum.
outputs = outputs * upper_bound
model = keras.Model(inputs, outputs)
return model
def get_critic():
# State as input
state_input = layers.Input(shape=(num_states,))
state_out = layers.Dense(16, activation="relu")(state_input)
state_out = layers.Dense(32, activation="relu")(state_out)
# Action as input
action_input = layers.Input(shape=(num_actions,))
action_out = layers.Dense(32, activation="relu")(action_input)
# Both are passed through separate layer before concatenating
concat = layers.Concatenate()([state_out, action_out])
out = layers.Dense(256, activation="relu")(concat)
out = layers.Dense(256, activation="relu")(out)
outputs = layers.Dense(1)(out)
# Outputs single value for give state-action
model = keras.Model([state_input, action_input], outputs)
return model
"""
`policy()` returns an action sampled from our Actor network plus some noise for
exploration.
"""
def policy(state, noise_object):
sampled_actions = keras.ops.squeeze(actor_model(state))
noise = noise_object()
# Adding noise to action
sampled_actions = sampled_actions.numpy() + noise
# We make sure action is within bounds
legal_action = np.clip(sampled_actions, lower_bound, upper_bound)
return [np.squeeze(legal_action)]
"""
## Training hyperparameters
"""
std_dev = 0.2
ou_noise = OUActionNoise(mean=np.zeros(1), std_deviation=float(std_dev) * np.ones(1))
actor_model = get_actor()
critic_model = get_critic()
target_actor = get_actor()
target_critic = get_critic()
# Making the weights equal initially
target_actor.set_weights(actor_model.get_weights())
target_critic.set_weights(critic_model.get_weights())
# Learning rate for actor-critic models
critic_lr = 0.002
actor_lr = 0.001
critic_optimizer = keras.optimizers.Adam(critic_lr)
actor_optimizer = keras.optimizers.Adam(actor_lr)
total_episodes = 100
# Discount factor for future rewards
gamma = 0.99
# Used to update target networks
tau = 0.005
buffer = Buffer(50000, 64)
"""
Now we implement our main training loop, and iterate over episodes.
We sample actions using `policy()` and train with `learn()` at each time step,
along with updating the Target networks at a rate `tau`.
"""
# To store reward history of each episode
ep_reward_list = []
# To store average reward history of last few episodes
avg_reward_list = []
# Takes about 4 min to train
for ep in range(total_episodes):
prev_state, _ = env.reset()
episodic_reward = 0
while True:
tf_prev_state = keras.ops.expand_dims(
keras.ops.convert_to_tensor(prev_state), 0
)
action = policy(tf_prev_state, ou_noise)
# Receive state and reward from environment.
state, reward, done, truncated, _ = env.step(action)
buffer.record((prev_state, action, reward, state))
episodic_reward += reward
buffer.learn()
update_target(target_actor, actor_model, tau)
update_target(target_critic, critic_model, tau)
# End this episode when `done` or `truncated` is True
if done or truncated:
break
prev_state = state
ep_reward_list.append(episodic_reward)
# Mean of last 40 episodes
avg_reward = np.mean(ep_reward_list[-40:])
print("Episode * {} * Avg Reward is ==> {}".format(ep, avg_reward))
avg_reward_list.append(avg_reward)
# Plotting graph
# Episodes versus Avg. Rewards
plt.plot(avg_reward_list)
plt.xlabel("Episode")
plt.ylabel("Avg. Episodic Reward")
plt.show()
"""
If training proceeds correctly, the average episodic reward will increase with time.
Feel free to try different learning rates, `tau` values, and architectures for the
Actor and Critic networks.
The Inverted Pendulum problem has low complexity, but DDPG work great on many other
problems.
Another great environment to try this on is `LunarLander-v2` continuous, but it will take
more episodes to obtain good results.
"""
# Save the weights
actor_model.save_weights("pendulum_actor.weights.h5")
critic_model.save_weights("pendulum_critic.weights.h5")
target_actor.save_weights("pendulum_target_actor.weights.h5")
target_critic.save_weights("pendulum_target_critic.weights.h5")
"""
Before Training:

"""
"""
After 100 episodes:

"""
|