Spaces:
Running
Running
File size: 14,899 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 |
"""
Title: Involutional neural networks
Author: [Aritra Roy Gosthipaty](https://twitter.com/ariG23498)
Date created: 2021/07/25
Last modified: 2021/07/25
Description: Deep dive into location-specific and channel-agnostic "involution" kernels.
Accelerator: GPU
"""
"""
## Introduction
Convolution has been the basis of most modern neural
networks for computer vision. A convolution kernel is
spatial-agnostic and channel-specific. Because of this, it isn't able
to adapt to different visual patterns with respect to
different spatial locations. Along with location-related problems, the
receptive field of convolution creates challenges with regard to capturing
long-range spatial interactions.
To address the above issues, Li et. al. rethink the properties
of convolution in
[Involution: Inverting the Inherence of Convolution for VisualRecognition](https://arxiv.org/abs/2103.06255).
The authors propose the "involution kernel", that is location-specific and
channel-agnostic. Due to the location-specific nature of the operation,
the authors say that self-attention falls under the design paradigm of
involution.
This example describes the involution kernel, compares two image
classification models, one with convolution and the other with
involution, and also tries drawing a parallel with the self-attention
layer.
"""
"""
## Setup
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import tensorflow as tf
import keras
import matplotlib.pyplot as plt
# Set seed for reproducibility.
tf.random.set_seed(42)
"""
## Convolution
Convolution remains the mainstay of deep neural networks for computer vision.
To understand Involution, it is necessary to talk about the
convolution operation.

Consider an input tensor **X** with dimensions **H**, **W** and
**C_in**. We take a collection of **C_out** convolution kernels each of
shape **K**, **K**, **C_in**. With the multiply-add operation between
the input tensor and the kernels we obtain an output tensor **Y** with
dimensions **H**, **W**, **C_out**.
In the diagram above `C_out=3`. This makes the output tensor of shape H,
W and 3. One can notice that the convoltuion kernel does not depend on
the spatial position of the input tensor which makes it
**location-agnostic**. On the other hand, each channel in the output
tensor is based on a specific convolution filter which makes is
**channel-specific**.
"""
"""
## Involution
The idea is to have an operation that is both **location-specific**
and **channel-agnostic**. Trying to implement these specific properties poses
a challenge. With a fixed number of involution kernels (for each
spatial position) we will **not** be able to process variable-resolution
input tensors.
To solve this problem, the authors have considered *generating* each
kernel conditioned on specific spatial positions. With this method, we
should be able to process variable-resolution input tensors with ease.
The diagram below provides an intuition on this kernel generation
method.

"""
class Involution(keras.layers.Layer):
def __init__(
self, channel, group_number, kernel_size, stride, reduction_ratio, name
):
super().__init__(name=name)
# Initialize the parameters.
self.channel = channel
self.group_number = group_number
self.kernel_size = kernel_size
self.stride = stride
self.reduction_ratio = reduction_ratio
def build(self, input_shape):
# Get the shape of the input.
(_, height, width, num_channels) = input_shape
# Scale the height and width with respect to the strides.
height = height // self.stride
width = width // self.stride
# Define a layer that average pools the input tensor
# if stride is more than 1.
self.stride_layer = (
keras.layers.AveragePooling2D(
pool_size=self.stride, strides=self.stride, padding="same"
)
if self.stride > 1
else tf.identity
)
# Define the kernel generation layer.
self.kernel_gen = keras.Sequential(
[
keras.layers.Conv2D(
filters=self.channel // self.reduction_ratio, kernel_size=1
),
keras.layers.BatchNormalization(),
keras.layers.ReLU(),
keras.layers.Conv2D(
filters=self.kernel_size * self.kernel_size * self.group_number,
kernel_size=1,
),
]
)
# Define reshape layers
self.kernel_reshape = keras.layers.Reshape(
target_shape=(
height,
width,
self.kernel_size * self.kernel_size,
1,
self.group_number,
)
)
self.input_patches_reshape = keras.layers.Reshape(
target_shape=(
height,
width,
self.kernel_size * self.kernel_size,
num_channels // self.group_number,
self.group_number,
)
)
self.output_reshape = keras.layers.Reshape(
target_shape=(height, width, num_channels)
)
def call(self, x):
# Generate the kernel with respect to the input tensor.
# B, H, W, K*K*G
kernel_input = self.stride_layer(x)
kernel = self.kernel_gen(kernel_input)
# reshape the kerenl
# B, H, W, K*K, 1, G
kernel = self.kernel_reshape(kernel)
# Extract input patches.
# B, H, W, K*K*C
input_patches = tf.image.extract_patches(
images=x,
sizes=[1, self.kernel_size, self.kernel_size, 1],
strides=[1, self.stride, self.stride, 1],
rates=[1, 1, 1, 1],
padding="SAME",
)
# Reshape the input patches to align with later operations.
# B, H, W, K*K, C//G, G
input_patches = self.input_patches_reshape(input_patches)
# Compute the multiply-add operation of kernels and patches.
# B, H, W, K*K, C//G, G
output = tf.multiply(kernel, input_patches)
# B, H, W, C//G, G
output = tf.reduce_sum(output, axis=3)
# Reshape the output kernel.
# B, H, W, C
output = self.output_reshape(output)
# Return the output tensor and the kernel.
return output, kernel
"""
## Testing the Involution layer
"""
# Define the input tensor.
input_tensor = tf.random.normal((32, 256, 256, 3))
# Compute involution with stride 1.
output_tensor, _ = Involution(
channel=3, group_number=1, kernel_size=5, stride=1, reduction_ratio=1, name="inv_1"
)(input_tensor)
print(f"with stride 1 ouput shape: {output_tensor.shape}")
# Compute involution with stride 2.
output_tensor, _ = Involution(
channel=3, group_number=1, kernel_size=5, stride=2, reduction_ratio=1, name="inv_2"
)(input_tensor)
print(f"with stride 2 ouput shape: {output_tensor.shape}")
# Compute involution with stride 1, channel 16 and reduction ratio 2.
output_tensor, _ = Involution(
channel=16, group_number=1, kernel_size=5, stride=1, reduction_ratio=2, name="inv_3"
)(input_tensor)
print(
"with channel 16 and reduction ratio 2 ouput shape: {}".format(output_tensor.shape)
)
"""
## Image Classification
In this section, we will build an image-classifier model. There will
be two models one with convolutions and the other with involutions.
The image-classification model is heavily inspired by this
[Convolutional Neural Network (CNN)](https://www.tensorflow.org/tutorials/images/cnn)
tutorial from Google.
"""
"""
## Get the CIFAR10 Dataset
"""
# Load the CIFAR10 dataset.
print("loading the CIFAR10 dataset...")
(
(train_images, train_labels),
(
test_images,
test_labels,
),
) = keras.datasets.cifar10.load_data()
# Normalize pixel values to be between 0 and 1.
(train_images, test_images) = (train_images / 255.0, test_images / 255.0)
# Shuffle and batch the dataset.
train_ds = (
tf.data.Dataset.from_tensor_slices((train_images, train_labels))
.shuffle(256)
.batch(256)
)
test_ds = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(256)
"""
## Visualise the data
"""
class_names = [
"airplane",
"automobile",
"bird",
"cat",
"deer",
"dog",
"frog",
"horse",
"ship",
"truck",
]
plt.figure(figsize=(10, 10))
for i in range(25):
plt.subplot(5, 5, i + 1)
plt.xticks([])
plt.yticks([])
plt.grid(False)
plt.imshow(train_images[i])
plt.xlabel(class_names[train_labels[i][0]])
plt.show()
"""
## Convolutional Neural Network
"""
# Build the conv model.
print("building the convolution model...")
conv_model = keras.Sequential(
[
keras.layers.Conv2D(32, (3, 3), input_shape=(32, 32, 3), padding="same"),
keras.layers.ReLU(name="relu1"),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), padding="same"),
keras.layers.ReLU(name="relu2"),
keras.layers.MaxPooling2D((2, 2)),
keras.layers.Conv2D(64, (3, 3), padding="same"),
keras.layers.ReLU(name="relu3"),
keras.layers.Flatten(),
keras.layers.Dense(64, activation="relu"),
keras.layers.Dense(10),
]
)
# Compile the mode with the necessary loss function and optimizer.
print("compiling the convolution model...")
conv_model.compile(
optimizer="adam",
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"],
)
# Train the model.
print("conv model training...")
conv_hist = conv_model.fit(train_ds, epochs=20, validation_data=test_ds)
"""
## Involutional Neural Network
"""
# Build the involution model.
print("building the involution model...")
inputs = keras.Input(shape=(32, 32, 3))
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_1"
)(inputs)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_2"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.MaxPooling2D((2, 2))(x)
x, _ = Involution(
channel=3, group_number=1, kernel_size=3, stride=1, reduction_ratio=2, name="inv_3"
)(x)
x = keras.layers.ReLU()(x)
x = keras.layers.Flatten()(x)
x = keras.layers.Dense(64, activation="relu")(x)
outputs = keras.layers.Dense(10)(x)
inv_model = keras.Model(inputs=[inputs], outputs=[outputs], name="inv_model")
# Compile the mode with the necessary loss function and optimizer.
print("compiling the involution model...")
inv_model.compile(
optimizer="adam",
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=["accuracy"],
)
# train the model
print("inv model training...")
inv_hist = inv_model.fit(train_ds, epochs=20, validation_data=test_ds)
"""
## Comparisons
In this section, we will be looking at both the models and compare a
few pointers.
"""
"""
### Parameters
One can see that with a similar architecture the parameters in a CNN
is much larger than that of an INN (Involutional Neural Network).
"""
conv_model.summary()
inv_model.summary()
"""
### Loss and Accuracy Plots
Here, the loss and the accuracy plots demonstrate that INNs are slow
learners (with lower parameters).
"""
plt.figure(figsize=(20, 5))
plt.subplot(1, 2, 1)
plt.title("Convolution Loss")
plt.plot(conv_hist.history["loss"], label="loss")
plt.plot(conv_hist.history["val_loss"], label="val_loss")
plt.legend()
plt.subplot(1, 2, 2)
plt.title("Involution Loss")
plt.plot(inv_hist.history["loss"], label="loss")
plt.plot(inv_hist.history["val_loss"], label="val_loss")
plt.legend()
plt.show()
plt.figure(figsize=(20, 5))
plt.subplot(1, 2, 1)
plt.title("Convolution Accuracy")
plt.plot(conv_hist.history["accuracy"], label="accuracy")
plt.plot(conv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()
plt.subplot(1, 2, 2)
plt.title("Involution Accuracy")
plt.plot(inv_hist.history["accuracy"], label="accuracy")
plt.plot(inv_hist.history["val_accuracy"], label="val_accuracy")
plt.legend()
plt.show()
"""
## Visualizing Involution Kernels
To visualize the kernels, we take the sum of **K×K** values from each
involution kernel. **All the representatives at different spatial
locations frame the corresponding heat map.**
The authors mention:
"Our proposed involution is reminiscent of self-attention and
essentially could become a generalized version of it."
With the visualization of the kernel we can indeed obtain an attention
map of the image. The learned involution kernels provides attention to
individual spatial positions of the input tensor. The
**location-specific** property makes involution a generic space of models
in which self-attention belongs.
"""
layer_names = ["inv_1", "inv_2", "inv_3"]
outputs = [inv_model.get_layer(name).output[1] for name in layer_names]
vis_model = keras.Model(inv_model.input, outputs)
fig, axes = plt.subplots(nrows=10, ncols=4, figsize=(10, 30))
for ax, test_image in zip(axes, test_images[:10]):
(inv1_kernel, inv2_kernel, inv3_kernel) = vis_model.predict(test_image[None, ...])
inv1_kernel = tf.reduce_sum(inv1_kernel, axis=[-1, -2, -3])
inv2_kernel = tf.reduce_sum(inv2_kernel, axis=[-1, -2, -3])
inv3_kernel = tf.reduce_sum(inv3_kernel, axis=[-1, -2, -3])
ax[0].imshow(keras.utils.array_to_img(test_image))
ax[0].set_title("Input Image")
ax[1].imshow(keras.utils.array_to_img(inv1_kernel[0, ..., None]))
ax[1].set_title("Involution Kernel 1")
ax[2].imshow(keras.utils.array_to_img(inv2_kernel[0, ..., None]))
ax[2].set_title("Involution Kernel 2")
ax[3].imshow(keras.utils.array_to_img(inv3_kernel[0, ..., None]))
ax[3].set_title("Involution Kernel 3")
"""
## Conclusions
In this example, the main focus was to build an `Involution` layer which
can be easily reused. While our comparisons were based on a specific
task, feel free to use the layer for different tasks and report your
results.
According to me, the key take-away of involution is its
relationship with self-attention. The intuition behind location-specific
and channel-spefic processing makes sense in a lot of tasks.
Moving forward one can:
- Look at [Yannick's video](https://youtu.be/pH2jZun8MoY) on
involution for a better understanding.
- Experiment with the various hyperparameters of the involution layer.
- Build different models with the involution layer.
- Try building a different kernel generation method altogether.
You can use the trained model hosted on [Hugging Face Hub](https://huggingface.co/keras-io/involution)
and try the demo on [Hugging Face Spaces](https://huggingface.co/spaces/keras-io/involution).
"""
|