File size: 16,190 Bytes
9ce984a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
"""
Title: Image classification with modern MLP models
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/05/30
Last modified: 2023/08/03
Description: Implementing the MLP-Mixer, FNet, and gMLP models for CIFAR-100 image classification.
Accelerator: GPU
"""

"""
## Introduction

This example implements three modern attention-free, multi-layer perceptron (MLP) based models for image
classification, demonstrated on the CIFAR-100 dataset:

1. The [MLP-Mixer](https://arxiv.org/abs/2105.01601) model, by Ilya Tolstikhin et al., based on two types of MLPs.
3. The [FNet](https://arxiv.org/abs/2105.03824) model, by James Lee-Thorp et al., based on unparameterized
Fourier Transform.
2. The [gMLP](https://arxiv.org/abs/2105.08050) model, by Hanxiao Liu et al., based on MLP with gating.

The purpose of the example is not to compare between these models, as they might perform differently on
different datasets with well-tuned hyperparameters. Rather, it is to show simple implementations of their
main building blocks.
"""

"""
## Setup
"""

import numpy as np
import keras
from keras import layers

"""
## Prepare the data
"""

num_classes = 100
input_shape = (32, 32, 3)

(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()

print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")

"""
## Configure the hyperparameters
"""

weight_decay = 0.0001
batch_size = 128
num_epochs = 1  # Recommended num_epochs = 50
dropout_rate = 0.2
image_size = 64  # We'll resize input images to this size.
patch_size = 8  # Size of the patches to be extracted from the input images.
num_patches = (image_size // patch_size) ** 2  # Size of the data array.
embedding_dim = 256  # Number of hidden units.
num_blocks = 4  # Number of blocks.

print(f"Image size: {image_size} X {image_size} = {image_size ** 2}")
print(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")
print(f"Elements per patch (3 channels): {(patch_size ** 2) * 3}")

"""
## Build a classification model

We implement a method that builds a classifier given the processing blocks.
"""


def build_classifier(blocks, positional_encoding=False):
    inputs = layers.Input(shape=input_shape)
    # Augment data.
    augmented = data_augmentation(inputs)
    # Create patches.
    patches = Patches(patch_size)(augmented)
    # Encode patches to generate a [batch_size, num_patches, embedding_dim] tensor.
    x = layers.Dense(units=embedding_dim)(patches)
    if positional_encoding:
        x = x + PositionEmbedding(sequence_length=num_patches)(x)
    # Process x using the module blocks.
    x = blocks(x)
    # Apply global average pooling to generate a [batch_size, embedding_dim] representation tensor.
    representation = layers.GlobalAveragePooling1D()(x)
    # Apply dropout.
    representation = layers.Dropout(rate=dropout_rate)(representation)
    # Compute logits outputs.
    logits = layers.Dense(num_classes)(representation)
    # Create the Keras model.
    return keras.Model(inputs=inputs, outputs=logits)


"""
## Define an experiment

We implement a utility function to compile, train, and evaluate a given model.
"""


def run_experiment(model):
    # Create Adam optimizer with weight decay.
    optimizer = keras.optimizers.AdamW(
        learning_rate=learning_rate,
        weight_decay=weight_decay,
    )
    # Compile the model.
    model.compile(
        optimizer=optimizer,
        loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        metrics=[
            keras.metrics.SparseCategoricalAccuracy(name="acc"),
            keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"),
        ],
    )
    # Create a learning rate scheduler callback.
    reduce_lr = keras.callbacks.ReduceLROnPlateau(
        monitor="val_loss", factor=0.5, patience=5
    )
    # Create an early stopping callback.
    early_stopping = keras.callbacks.EarlyStopping(
        monitor="val_loss", patience=10, restore_best_weights=True
    )
    # Fit the model.
    history = model.fit(
        x=x_train,
        y=y_train,
        batch_size=batch_size,
        epochs=num_epochs,
        validation_split=0.1,
        callbacks=[early_stopping, reduce_lr],
    )

    _, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
    print(f"Test accuracy: {round(accuracy * 100, 2)}%")
    print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")

    # Return history to plot learning curves.
    return history


"""
## Use data augmentation
"""

data_augmentation = keras.Sequential(
    [
        layers.Normalization(),
        layers.Resizing(image_size, image_size),
        layers.RandomFlip("horizontal"),
        layers.RandomZoom(height_factor=0.2, width_factor=0.2),
    ],
    name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)


"""
## Implement patch extraction as a layer
"""


class Patches(layers.Layer):
    def __init__(self, patch_size, **kwargs):
        super().__init__(**kwargs)
        self.patch_size = patch_size

    def call(self, x):
        patches = keras.ops.image.extract_patches(x, self.patch_size)
        batch_size = keras.ops.shape(patches)[0]
        num_patches = keras.ops.shape(patches)[1] * keras.ops.shape(patches)[2]
        patch_dim = keras.ops.shape(patches)[3]
        out = keras.ops.reshape(patches, (batch_size, num_patches, patch_dim))
        return out


"""
## Implement position embedding as a layer
"""


class PositionEmbedding(keras.layers.Layer):
    def __init__(
        self,
        sequence_length,
        initializer="glorot_uniform",
        **kwargs,
    ):
        super().__init__(**kwargs)
        if sequence_length is None:
            raise ValueError("`sequence_length` must be an Integer, received `None`.")
        self.sequence_length = int(sequence_length)
        self.initializer = keras.initializers.get(initializer)

    def get_config(self):
        config = super().get_config()
        config.update(
            {
                "sequence_length": self.sequence_length,
                "initializer": keras.initializers.serialize(self.initializer),
            }
        )
        return config

    def build(self, input_shape):
        feature_size = input_shape[-1]
        self.position_embeddings = self.add_weight(
            name="embeddings",
            shape=[self.sequence_length, feature_size],
            initializer=self.initializer,
            trainable=True,
        )

        super().build(input_shape)

    def call(self, inputs, start_index=0):
        shape = keras.ops.shape(inputs)
        feature_length = shape[-1]
        sequence_length = shape[-2]
        # trim to match the length of the input sequence, which might be less
        # than the sequence_length of the layer.
        position_embeddings = keras.ops.convert_to_tensor(self.position_embeddings)
        position_embeddings = keras.ops.slice(
            position_embeddings,
            (start_index, 0),
            (sequence_length, feature_length),
        )
        return keras.ops.broadcast_to(position_embeddings, shape)

    def compute_output_shape(self, input_shape):
        return input_shape


"""
## The MLP-Mixer model

The MLP-Mixer is an architecture based exclusively on
multi-layer perceptrons (MLPs), that contains two types of MLP layers:

1. One applied independently to image patches, which mixes the per-location features.
2. The other applied across patches (along channels), which mixes spatial information.

This is similar to a [depthwise separable convolution based model](https://arxiv.org/abs/1610.02357)
such as the Xception model, but with two chained dense transforms, no max pooling, and layer normalization
instead of batch normalization.
"""

"""
### Implement the MLP-Mixer module
"""


class MLPMixerLayer(layers.Layer):
    def __init__(self, num_patches, hidden_units, dropout_rate, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.mlp1 = keras.Sequential(
            [
                layers.Dense(units=num_patches, activation="gelu"),
                layers.Dense(units=num_patches),
                layers.Dropout(rate=dropout_rate),
            ]
        )
        self.mlp2 = keras.Sequential(
            [
                layers.Dense(units=num_patches, activation="gelu"),
                layers.Dense(units=hidden_units),
                layers.Dropout(rate=dropout_rate),
            ]
        )
        self.normalize = layers.LayerNormalization(epsilon=1e-6)

    def build(self, input_shape):
        return super().build(input_shape)

    def call(self, inputs):
        # Apply layer normalization.
        x = self.normalize(inputs)
        # Transpose inputs from [num_batches, num_patches, hidden_units] to [num_batches, hidden_units, num_patches].
        x_channels = keras.ops.transpose(x, axes=(0, 2, 1))
        # Apply mlp1 on each channel independently.
        mlp1_outputs = self.mlp1(x_channels)
        # Transpose mlp1_outputs from [num_batches, hidden_units, num_patches] to [num_batches, num_patches, hidden_units].
        mlp1_outputs = keras.ops.transpose(mlp1_outputs, axes=(0, 2, 1))
        # Add skip connection.
        x = mlp1_outputs + inputs
        # Apply layer normalization.
        x_patches = self.normalize(x)
        # Apply mlp2 on each patch independtenly.
        mlp2_outputs = self.mlp2(x_patches)
        # Add skip connection.
        x = x + mlp2_outputs
        return x


"""
### Build, train, and evaluate the MLP-Mixer model

Note that training the model with the current settings on a V100 GPUs
takes around 8 seconds per epoch.
"""

mlpmixer_blocks = keras.Sequential(
    [MLPMixerLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.005
mlpmixer_classifier = build_classifier(mlpmixer_blocks)
history = run_experiment(mlpmixer_classifier)

"""
The MLP-Mixer model tends to have much less number of parameters compared
to convolutional and transformer-based models, which leads to less training and
serving computational cost.

As mentioned in the [MLP-Mixer](https://arxiv.org/abs/2105.01601) paper,
when pre-trained on large datasets, or with modern regularization schemes,
the MLP-Mixer attains competitive scores to state-of-the-art models.
You can obtain better results by increasing the embedding dimensions,
increasing the number of mixer blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
"""

"""
## The FNet model

The FNet uses a similar block to the Transformer block. However, FNet replaces the self-attention layer
in the Transformer block with a parameter-free 2D Fourier transformation layer:

1. One 1D Fourier Transform is applied along the patches.
2. One 1D Fourier Transform is applied along the channels.
"""

"""
### Implement the FNet module
"""


class FNetLayer(layers.Layer):
    def __init__(self, embedding_dim, dropout_rate, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.ffn = keras.Sequential(
            [
                layers.Dense(units=embedding_dim, activation="gelu"),
                layers.Dropout(rate=dropout_rate),
                layers.Dense(units=embedding_dim),
            ]
        )

        self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
        self.normalize2 = layers.LayerNormalization(epsilon=1e-6)

    def call(self, inputs):
        # Apply fourier transformations.
        real_part = inputs
        im_part = keras.ops.zeros_like(inputs)
        x = keras.ops.fft2((real_part, im_part))[0]
        # Add skip connection.
        x = x + inputs
        # Apply layer normalization.
        x = self.normalize1(x)
        # Apply Feedfowrad network.
        x_ffn = self.ffn(x)
        # Add skip connection.
        x = x + x_ffn
        # Apply layer normalization.
        return self.normalize2(x)


"""
### Build, train, and evaluate the FNet model

Note that training the model with the current settings on a V100 GPUs
takes around 8 seconds per epoch.
"""

fnet_blocks = keras.Sequential(
    [FNetLayer(embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.001
fnet_classifier = build_classifier(fnet_blocks, positional_encoding=True)
history = run_experiment(fnet_classifier)

"""
As shown in the [FNet](https://arxiv.org/abs/2105.03824) paper,
better results can be achieved by increasing the embedding dimensions,
increasing the number of FNet blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
The FNet scales very efficiently to long inputs, runs much faster than attention-based
Transformer models, and produces competitive accuracy results.
"""

"""
## The gMLP model

The gMLP is a MLP architecture that features a Spatial Gating Unit (SGU).
The SGU enables cross-patch interactions across the spatial (channel) dimension, by:

1. Transforming the input spatially by applying linear projection across patches (along channels).
2. Applying element-wise multiplication of the input and its spatial transformation.
"""

"""
### Implement the gMLP module
"""


class gMLPLayer(layers.Layer):
    def __init__(self, num_patches, embedding_dim, dropout_rate, *args, **kwargs):
        super().__init__(*args, **kwargs)

        self.channel_projection1 = keras.Sequential(
            [
                layers.Dense(units=embedding_dim * 2, activation="gelu"),
                layers.Dropout(rate=dropout_rate),
            ]
        )

        self.channel_projection2 = layers.Dense(units=embedding_dim)

        self.spatial_projection = layers.Dense(
            units=num_patches, bias_initializer="Ones"
        )

        self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
        self.normalize2 = layers.LayerNormalization(epsilon=1e-6)

    def spatial_gating_unit(self, x):
        # Split x along the channel dimensions.
        # Tensors u and v will in the shape of [batch_size, num_patchs, embedding_dim].
        u, v = keras.ops.split(x, indices_or_sections=2, axis=2)
        # Apply layer normalization.
        v = self.normalize2(v)
        # Apply spatial projection.
        v_channels = keras.ops.transpose(v, axes=(0, 2, 1))
        v_projected = self.spatial_projection(v_channels)
        v_projected = keras.ops.transpose(v_projected, axes=(0, 2, 1))
        # Apply element-wise multiplication.
        return u * v_projected

    def call(self, inputs):
        # Apply layer normalization.
        x = self.normalize1(inputs)
        # Apply the first channel projection. x_projected shape: [batch_size, num_patches, embedding_dim * 2].
        x_projected = self.channel_projection1(x)
        # Apply the spatial gating unit. x_spatial shape: [batch_size, num_patches, embedding_dim].
        x_spatial = self.spatial_gating_unit(x_projected)
        # Apply the second channel projection. x_projected shape: [batch_size, num_patches, embedding_dim].
        x_projected = self.channel_projection2(x_spatial)
        # Add skip connection.
        return x + x_projected


"""
### Build, train, and evaluate the gMLP model

Note that training the model with the current settings on a V100 GPUs
takes around 9 seconds per epoch.
"""

gmlp_blocks = keras.Sequential(
    [gMLPLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.003
gmlp_classifier = build_classifier(gmlp_blocks)
history = run_experiment(gmlp_classifier)

"""
As shown in the [gMLP](https://arxiv.org/abs/2105.08050) paper,
better results can be achieved by increasing the embedding dimensions,
increasing the number of gMLP blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
Note that, the paper used advanced regularization strategies, such as MixUp and CutMix,
as well as AutoAugment.
"""