Spaces:
Running
Running
File size: 16,190 Bytes
9ce984a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 |
"""
Title: Image classification with modern MLP models
Author: [Khalid Salama](https://www.linkedin.com/in/khalid-salama-24403144/)
Date created: 2021/05/30
Last modified: 2023/08/03
Description: Implementing the MLP-Mixer, FNet, and gMLP models for CIFAR-100 image classification.
Accelerator: GPU
"""
"""
## Introduction
This example implements three modern attention-free, multi-layer perceptron (MLP) based models for image
classification, demonstrated on the CIFAR-100 dataset:
1. The [MLP-Mixer](https://arxiv.org/abs/2105.01601) model, by Ilya Tolstikhin et al., based on two types of MLPs.
3. The [FNet](https://arxiv.org/abs/2105.03824) model, by James Lee-Thorp et al., based on unparameterized
Fourier Transform.
2. The [gMLP](https://arxiv.org/abs/2105.08050) model, by Hanxiao Liu et al., based on MLP with gating.
The purpose of the example is not to compare between these models, as they might perform differently on
different datasets with well-tuned hyperparameters. Rather, it is to show simple implementations of their
main building blocks.
"""
"""
## Setup
"""
import numpy as np
import keras
from keras import layers
"""
## Prepare the data
"""
num_classes = 100
input_shape = (32, 32, 3)
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar100.load_data()
print(f"x_train shape: {x_train.shape} - y_train shape: {y_train.shape}")
print(f"x_test shape: {x_test.shape} - y_test shape: {y_test.shape}")
"""
## Configure the hyperparameters
"""
weight_decay = 0.0001
batch_size = 128
num_epochs = 1 # Recommended num_epochs = 50
dropout_rate = 0.2
image_size = 64 # We'll resize input images to this size.
patch_size = 8 # Size of the patches to be extracted from the input images.
num_patches = (image_size // patch_size) ** 2 # Size of the data array.
embedding_dim = 256 # Number of hidden units.
num_blocks = 4 # Number of blocks.
print(f"Image size: {image_size} X {image_size} = {image_size ** 2}")
print(f"Patch size: {patch_size} X {patch_size} = {patch_size ** 2} ")
print(f"Patches per image: {num_patches}")
print(f"Elements per patch (3 channels): {(patch_size ** 2) * 3}")
"""
## Build a classification model
We implement a method that builds a classifier given the processing blocks.
"""
def build_classifier(blocks, positional_encoding=False):
inputs = layers.Input(shape=input_shape)
# Augment data.
augmented = data_augmentation(inputs)
# Create patches.
patches = Patches(patch_size)(augmented)
# Encode patches to generate a [batch_size, num_patches, embedding_dim] tensor.
x = layers.Dense(units=embedding_dim)(patches)
if positional_encoding:
x = x + PositionEmbedding(sequence_length=num_patches)(x)
# Process x using the module blocks.
x = blocks(x)
# Apply global average pooling to generate a [batch_size, embedding_dim] representation tensor.
representation = layers.GlobalAveragePooling1D()(x)
# Apply dropout.
representation = layers.Dropout(rate=dropout_rate)(representation)
# Compute logits outputs.
logits = layers.Dense(num_classes)(representation)
# Create the Keras model.
return keras.Model(inputs=inputs, outputs=logits)
"""
## Define an experiment
We implement a utility function to compile, train, and evaluate a given model.
"""
def run_experiment(model):
# Create Adam optimizer with weight decay.
optimizer = keras.optimizers.AdamW(
learning_rate=learning_rate,
weight_decay=weight_decay,
)
# Compile the model.
model.compile(
optimizer=optimizer,
loss=keras.losses.SparseCategoricalCrossentropy(from_logits=True),
metrics=[
keras.metrics.SparseCategoricalAccuracy(name="acc"),
keras.metrics.SparseTopKCategoricalAccuracy(5, name="top5-acc"),
],
)
# Create a learning rate scheduler callback.
reduce_lr = keras.callbacks.ReduceLROnPlateau(
monitor="val_loss", factor=0.5, patience=5
)
# Create an early stopping callback.
early_stopping = keras.callbacks.EarlyStopping(
monitor="val_loss", patience=10, restore_best_weights=True
)
# Fit the model.
history = model.fit(
x=x_train,
y=y_train,
batch_size=batch_size,
epochs=num_epochs,
validation_split=0.1,
callbacks=[early_stopping, reduce_lr],
)
_, accuracy, top_5_accuracy = model.evaluate(x_test, y_test)
print(f"Test accuracy: {round(accuracy * 100, 2)}%")
print(f"Test top 5 accuracy: {round(top_5_accuracy * 100, 2)}%")
# Return history to plot learning curves.
return history
"""
## Use data augmentation
"""
data_augmentation = keras.Sequential(
[
layers.Normalization(),
layers.Resizing(image_size, image_size),
layers.RandomFlip("horizontal"),
layers.RandomZoom(height_factor=0.2, width_factor=0.2),
],
name="data_augmentation",
)
# Compute the mean and the variance of the training data for normalization.
data_augmentation.layers[0].adapt(x_train)
"""
## Implement patch extraction as a layer
"""
class Patches(layers.Layer):
def __init__(self, patch_size, **kwargs):
super().__init__(**kwargs)
self.patch_size = patch_size
def call(self, x):
patches = keras.ops.image.extract_patches(x, self.patch_size)
batch_size = keras.ops.shape(patches)[0]
num_patches = keras.ops.shape(patches)[1] * keras.ops.shape(patches)[2]
patch_dim = keras.ops.shape(patches)[3]
out = keras.ops.reshape(patches, (batch_size, num_patches, patch_dim))
return out
"""
## Implement position embedding as a layer
"""
class PositionEmbedding(keras.layers.Layer):
def __init__(
self,
sequence_length,
initializer="glorot_uniform",
**kwargs,
):
super().__init__(**kwargs)
if sequence_length is None:
raise ValueError("`sequence_length` must be an Integer, received `None`.")
self.sequence_length = int(sequence_length)
self.initializer = keras.initializers.get(initializer)
def get_config(self):
config = super().get_config()
config.update(
{
"sequence_length": self.sequence_length,
"initializer": keras.initializers.serialize(self.initializer),
}
)
return config
def build(self, input_shape):
feature_size = input_shape[-1]
self.position_embeddings = self.add_weight(
name="embeddings",
shape=[self.sequence_length, feature_size],
initializer=self.initializer,
trainable=True,
)
super().build(input_shape)
def call(self, inputs, start_index=0):
shape = keras.ops.shape(inputs)
feature_length = shape[-1]
sequence_length = shape[-2]
# trim to match the length of the input sequence, which might be less
# than the sequence_length of the layer.
position_embeddings = keras.ops.convert_to_tensor(self.position_embeddings)
position_embeddings = keras.ops.slice(
position_embeddings,
(start_index, 0),
(sequence_length, feature_length),
)
return keras.ops.broadcast_to(position_embeddings, shape)
def compute_output_shape(self, input_shape):
return input_shape
"""
## The MLP-Mixer model
The MLP-Mixer is an architecture based exclusively on
multi-layer perceptrons (MLPs), that contains two types of MLP layers:
1. One applied independently to image patches, which mixes the per-location features.
2. The other applied across patches (along channels), which mixes spatial information.
This is similar to a [depthwise separable convolution based model](https://arxiv.org/abs/1610.02357)
such as the Xception model, but with two chained dense transforms, no max pooling, and layer normalization
instead of batch normalization.
"""
"""
### Implement the MLP-Mixer module
"""
class MLPMixerLayer(layers.Layer):
def __init__(self, num_patches, hidden_units, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.mlp1 = keras.Sequential(
[
layers.Dense(units=num_patches, activation="gelu"),
layers.Dense(units=num_patches),
layers.Dropout(rate=dropout_rate),
]
)
self.mlp2 = keras.Sequential(
[
layers.Dense(units=num_patches, activation="gelu"),
layers.Dense(units=hidden_units),
layers.Dropout(rate=dropout_rate),
]
)
self.normalize = layers.LayerNormalization(epsilon=1e-6)
def build(self, input_shape):
return super().build(input_shape)
def call(self, inputs):
# Apply layer normalization.
x = self.normalize(inputs)
# Transpose inputs from [num_batches, num_patches, hidden_units] to [num_batches, hidden_units, num_patches].
x_channels = keras.ops.transpose(x, axes=(0, 2, 1))
# Apply mlp1 on each channel independently.
mlp1_outputs = self.mlp1(x_channels)
# Transpose mlp1_outputs from [num_batches, hidden_units, num_patches] to [num_batches, num_patches, hidden_units].
mlp1_outputs = keras.ops.transpose(mlp1_outputs, axes=(0, 2, 1))
# Add skip connection.
x = mlp1_outputs + inputs
# Apply layer normalization.
x_patches = self.normalize(x)
# Apply mlp2 on each patch independtenly.
mlp2_outputs = self.mlp2(x_patches)
# Add skip connection.
x = x + mlp2_outputs
return x
"""
### Build, train, and evaluate the MLP-Mixer model
Note that training the model with the current settings on a V100 GPUs
takes around 8 seconds per epoch.
"""
mlpmixer_blocks = keras.Sequential(
[MLPMixerLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.005
mlpmixer_classifier = build_classifier(mlpmixer_blocks)
history = run_experiment(mlpmixer_classifier)
"""
The MLP-Mixer model tends to have much less number of parameters compared
to convolutional and transformer-based models, which leads to less training and
serving computational cost.
As mentioned in the [MLP-Mixer](https://arxiv.org/abs/2105.01601) paper,
when pre-trained on large datasets, or with modern regularization schemes,
the MLP-Mixer attains competitive scores to state-of-the-art models.
You can obtain better results by increasing the embedding dimensions,
increasing the number of mixer blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
"""
"""
## The FNet model
The FNet uses a similar block to the Transformer block. However, FNet replaces the self-attention layer
in the Transformer block with a parameter-free 2D Fourier transformation layer:
1. One 1D Fourier Transform is applied along the patches.
2. One 1D Fourier Transform is applied along the channels.
"""
"""
### Implement the FNet module
"""
class FNetLayer(layers.Layer):
def __init__(self, embedding_dim, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.ffn = keras.Sequential(
[
layers.Dense(units=embedding_dim, activation="gelu"),
layers.Dropout(rate=dropout_rate),
layers.Dense(units=embedding_dim),
]
)
self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
self.normalize2 = layers.LayerNormalization(epsilon=1e-6)
def call(self, inputs):
# Apply fourier transformations.
real_part = inputs
im_part = keras.ops.zeros_like(inputs)
x = keras.ops.fft2((real_part, im_part))[0]
# Add skip connection.
x = x + inputs
# Apply layer normalization.
x = self.normalize1(x)
# Apply Feedfowrad network.
x_ffn = self.ffn(x)
# Add skip connection.
x = x + x_ffn
# Apply layer normalization.
return self.normalize2(x)
"""
### Build, train, and evaluate the FNet model
Note that training the model with the current settings on a V100 GPUs
takes around 8 seconds per epoch.
"""
fnet_blocks = keras.Sequential(
[FNetLayer(embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.001
fnet_classifier = build_classifier(fnet_blocks, positional_encoding=True)
history = run_experiment(fnet_classifier)
"""
As shown in the [FNet](https://arxiv.org/abs/2105.03824) paper,
better results can be achieved by increasing the embedding dimensions,
increasing the number of FNet blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
The FNet scales very efficiently to long inputs, runs much faster than attention-based
Transformer models, and produces competitive accuracy results.
"""
"""
## The gMLP model
The gMLP is a MLP architecture that features a Spatial Gating Unit (SGU).
The SGU enables cross-patch interactions across the spatial (channel) dimension, by:
1. Transforming the input spatially by applying linear projection across patches (along channels).
2. Applying element-wise multiplication of the input and its spatial transformation.
"""
"""
### Implement the gMLP module
"""
class gMLPLayer(layers.Layer):
def __init__(self, num_patches, embedding_dim, dropout_rate, *args, **kwargs):
super().__init__(*args, **kwargs)
self.channel_projection1 = keras.Sequential(
[
layers.Dense(units=embedding_dim * 2, activation="gelu"),
layers.Dropout(rate=dropout_rate),
]
)
self.channel_projection2 = layers.Dense(units=embedding_dim)
self.spatial_projection = layers.Dense(
units=num_patches, bias_initializer="Ones"
)
self.normalize1 = layers.LayerNormalization(epsilon=1e-6)
self.normalize2 = layers.LayerNormalization(epsilon=1e-6)
def spatial_gating_unit(self, x):
# Split x along the channel dimensions.
# Tensors u and v will in the shape of [batch_size, num_patchs, embedding_dim].
u, v = keras.ops.split(x, indices_or_sections=2, axis=2)
# Apply layer normalization.
v = self.normalize2(v)
# Apply spatial projection.
v_channels = keras.ops.transpose(v, axes=(0, 2, 1))
v_projected = self.spatial_projection(v_channels)
v_projected = keras.ops.transpose(v_projected, axes=(0, 2, 1))
# Apply element-wise multiplication.
return u * v_projected
def call(self, inputs):
# Apply layer normalization.
x = self.normalize1(inputs)
# Apply the first channel projection. x_projected shape: [batch_size, num_patches, embedding_dim * 2].
x_projected = self.channel_projection1(x)
# Apply the spatial gating unit. x_spatial shape: [batch_size, num_patches, embedding_dim].
x_spatial = self.spatial_gating_unit(x_projected)
# Apply the second channel projection. x_projected shape: [batch_size, num_patches, embedding_dim].
x_projected = self.channel_projection2(x_spatial)
# Add skip connection.
return x + x_projected
"""
### Build, train, and evaluate the gMLP model
Note that training the model with the current settings on a V100 GPUs
takes around 9 seconds per epoch.
"""
gmlp_blocks = keras.Sequential(
[gMLPLayer(num_patches, embedding_dim, dropout_rate) for _ in range(num_blocks)]
)
learning_rate = 0.003
gmlp_classifier = build_classifier(gmlp_blocks)
history = run_experiment(gmlp_classifier)
"""
As shown in the [gMLP](https://arxiv.org/abs/2105.08050) paper,
better results can be achieved by increasing the embedding dimensions,
increasing the number of gMLP blocks, and training the model for longer.
You may also try to increase the size of the input images and use different patch sizes.
Note that, the paper used advanced regularization strategies, such as MixUp and CutMix,
as well as AutoAugment.
"""
|