File size: 51,194 Bytes
d6212ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
import streamlit as st
import numpy as np
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import LinearSVC, SVC
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import ExtraTreesClassifier, RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.linear_model import RidgeClassifier
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import AdaBoostClassifier
from sklearn.metrics import accuracy_score, confusion_matrix
from sklearn.model_selection import train_test_split, learning_curve
import matplotlib.pyplot as plt
import seaborn as sns

def setup_page_config():
    """Configure the Streamlit page"""
    st.set_page_config(
        page_title="Algorithm Education",
        page_icon="🤖",
        layout="wide"
    )

def page_introduction():
    """Display the introduction section of the page"""
    st.title("Machine Learning Algorithm Education 🎓")
    
    st.markdown("""
    Welcome to the Algorithm Education page! This interactive guide helps you understand various machine learning 
    algorithms used in classification tasks. Each algorithm is explained in detail with:

    - 📝 Clear descriptions and explanations
    - ✅ Advantages and limitations
    - 🎯 Practical use cases
    - 📊 Mathematical foundations
    - 💻 Implementation examples
    - 🔬 Interactive demonstrations
    - 📚 Academic references
    
    ### How to Use This Guide
    1. Select an algorithm from the dropdown menu below
    2. Explore its characteristics and implementation details
    3. Try the interactive demo with different datasets
    4. Compare performance metrics and visualizations
    
    ### Available Algorithms
    This guide covers popular classification algorithms including:
    - Naive Bayes variants
    - Support Vector Machines
    - Neural Networks
    - Tree-based methods
    - Nearest Neighbors
    - Linear Classifiers
    - Ensemble Methods
    
    ### Why Understanding Algorithms Matters
    Choosing the right algorithm for your machine learning task is crucial for:
    - Achieving optimal performance
    - Efficient resource utilization
    - Meeting specific problem constraints
    - Understanding model behavior and limitations
    """)

def algorithm_info():
    """Display detailed algorithm information"""
    # First show the introduction
    page_introduction()
    
    algorithms = {
        "Gaussian Naive Bayes (GaussianNB)": {
            "description": """
            A probabilistic classifier based on Bayes' theorem with strong independence assumptions between features. 
            Assumes features follow a Gaussian (normal) distribution.
            """,
            "pros": [
                "Simple and fast",
                "Works well with small datasets",
                "Good for high-dimensional data",
                "Performs well when features are normally distributed"
            ],
            "cons": [
                "Assumes feature independence (often unrealistic)",
                "Limited by Gaussian distribution assumption",
                "May underperform when features are highly correlated"
            ],
            "use_cases": [
                "Text classification",
                "Spam detection",
                "Medical diagnosis",
                "Real-time prediction scenarios"
            ],
            "math_details": {
                "main_formula": r"""
                P(y|x_1,...,x_n) = \frac{P(y)\prod_{i=1}^{n}P(x_i|y)}{P(x_1,...,x_n)}
                """,
                "component_formulas": [
                    {
                        "name": "Gaussian Probability Density",
                        "formula": r"""
                        P(x_i|y) = \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x_i-\mu_y)^2}{2\sigma^2_y}\right)
                        """
                    },
                    {
                        "name": "Class Prior Probability",
                        "formula": r"""
                        P(y) = \frac{\text{number of samples in class y}}{\text{total number of samples}}
                        """
                    }
                ],
                "explanation": """
                - P(y|x₁,...,xₙ) is the posterior probability of class y given features
                - P(y) is the prior probability of class y
                - P(xᵢ|y) is the likelihood of feature xᵢ given class y
                - μy and σ²y are the mean and variance of features in class y
                """
            },
            "references": [
                {
                    "title": "Naive Bayes and Text Classification",
                    "authors": "Sebastian Raschka",
                    "publication": "arXiv preprint",
                    "year": "2014",
                    "url": "https://arxiv.org/abs/1410.5329"
                },
                {
                    "title": "scikit-learn: Machine Learning in Python",
                    "authors": "Pedregosa et al.",
                    "publication": "Journal of Machine Learning Research",
                    "year": "2011",
                    "url": "https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html"
                },
                {
                    "title": "Fundamental Mathematical Formulas Used in Machine Learning",
                    "authors": "Showmik Setta",
                    "publication": "Medium",
                    "year": "2023",
                    "url": "https://medium.com/@showmiklovesport/fundamental-mathematical-formulas-used-in-machine-learning-beginner-21c0843e61e0"
                }
            ]
        },
        "Linear Support Vector Classification (LinearSVC)": {
            "description": """
            A linear classifier that finds the hyperplane that best separates classes by maximizing the margin between them.
            Optimized implementation of Support Vector Classification for linear classification.
            """,
            "pros": [
                "Effective for high-dimensional spaces",
                "Memory efficient",
                "Faster than standard SVC with linear kernel",
                "Works well when classes are linearly separable"
            ],
            "cons": [
                "Only suitable for linear classification",
                "Sensitive to feature scaling",
                "May struggle with overlapping classes",
                "No probability estimates by default"
            ],
            "use_cases": [
                "Text classification",
                "Image classification",
                "Bioinformatics",
                "High-dimensional data analysis"
            ],
            "math_details": {
                "main_formula": r"""
                \min_{w,b} \frac{1}{2}||w||^2 + C\sum_{i=1}^{n} \max(0, 1-y_i(w^Tx_i+b))
                """,
                "component_formulas": [
                    {
                        "name": "Decision Function",
                        "formula": r"""
                        f(x) = w^Tx + b
                        """
                    },
                    {
                        "name": "Margin Width",
                        "formula": r"""
                        \text{margin} = \frac{2}{||w||}
                        """
                    }
                ],
                "explanation": """
                - w is the weight vector
                - b is the bias term
                - C is the regularization parameter
                - yᵢ are the true labels (±1)
                - xᵢ are the input features
                """
            },
            "references": [
                {
                    "title": "A Tutorial on Support Vector Machines for Pattern Recognition",
                    "authors": "Christopher J.C. Burges",
                    "publication": "Data Mining and Knowledge Discovery",
                    "year": "1998",
                    "url": "https://link.springer.com/article/10.1023/A:1009715923555"
                },
                {
                    "title": "Support Vector Machines",
                    "authors": "Andrew Ng",
                    "publication": "CS229 Lecture Notes, Stanford University",
                    "year": "2018",
                    "url": "http://cs229.stanford.edu/notes/cs229-notes3.pdf"
                },
                {
                    "title": "Machine Learning Algorithms: Mathematical Deep Dive",
                    "authors": "Vidushi Meel",
                    "publication": "viso.ai",
                    "year": "2021",
                    "url": "https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/"
                }
            ]
        },
        "Support Vector Classification (SVC)": {
            "description": """
            A powerful classifier that can perform non-linear classification using different kernel functions to transform 
            the feature space. Creates an optimal hyperplane in a transformed feature space.
            """,
            "pros": [
                "Effective for non-linear classification",
                "Works well with high-dimensional data",
                "Robust against overfitting",
                "Versatile through different kernel functions"
            ],
            "cons": [
                "Computationally intensive for large datasets",
                "Sensitive to feature scaling",
                "Kernel selection can be challenging",
                "Memory intensive for large datasets"
            ],
            "use_cases": [
                "Image classification",
                "Handwriting recognition",
                "Bioinformatics",
                "Pattern recognition"
            ],
            "math_details": {
                "main_formula": r"""
                \min_{w,b} \frac{1}{2}||w||^2 + C\sum_{i=1}^{n} \xi_i
                """,
                "component_formulas": [
                    {
                        "name": "Kernel Function (RBF)",
                        "formula": r"""
                        K(x,x') = \exp\left(-\gamma ||x-x'||^2\right)
                        """
                    },
                    {
                        "name": "Decision Function",
                        "formula": r"""
                        f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i,x) + b
                        """
                    }
                ],
                "explanation": """
                - K(x,x') is the kernel function
                - γ is the kernel coefficient
                - αᵢ are the dual coefficients
                - ξᵢ are the slack variables
                """
            },
            "references": [
                {
                    "title": "Support Vector Networks",
                    "authors": "Cortes C., Vapnik V.",
                    "publication": "Machine Learning",
                    "year": "1995",
                    "url": "https://link.springer.com/article/10.1007/BF00994018"
                },
                {
                    "title": "A Practical Guide to Support Vector Classification",
                    "authors": "Hsu, Chang, and Lin",
                    "publication": "BJU International",
                    "year": "2003",
                    "url": "https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf"
                },
                {
                    "title": "Machine Learning Algorithms: Mathematical Deep Dive",
                    "authors": "Vidushi Meel",
                    "publication": "viso.ai",
                    "year": "2021",
                    "url": "https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/"
                }
            ]
        },
        "Multi-layer Perceptron (MLPClassifier)": {
            "description": """
            A neural network classifier that learns non-linear models by training multiple layers of nodes. 
            Each node uses a non-linear activation function to transform inputs.
            """,
            "pros": [
                "Can learn highly non-linear patterns",
                "Capable of learning complex relationships",
                "Good generalization with proper regularization",
                "Can handle multiple classes naturally"
            ],
            "cons": [
                "Requires careful hyperparameter tuning",
                "Computationally intensive",
                "Sensitive to feature scaling",
                "May get stuck in local minima"
            ],
            "use_cases": [
                "Image recognition",
                "Speech recognition",
                "Complex pattern recognition",
                "Financial prediction"
            ],
            "math_details": {
                "main_formula": r"""
                h_l = \sigma(W_l h_{l-1} + b_l)
                """,
                "component_formulas": [
                    {
                        "name": "ReLU Activation",
                        "formula": r"""
                        \sigma(x) = \max(0,x)
                        """
                    },
                    {
                        "name": "Softmax Output",
                        "formula": r"""
                        P(y=j|x) = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}
                        """
                    }
                ],
                "explanation": """
                - hₗ is the output of layer l
                - Wₗ is the weight matrix for layer l
                - bₗ is the bias vector for layer l
                - σ is the activation function
                """
            },
            "references": [
                {
                    "title": "Learning representations by back-propagating errors",
                    "authors": "Rumelhart, D. E., Hinton, G. E., & Williams, R. J.",
                    "publication": "Nature",
                    "year": "1986",
                    "url": "https://www.nature.com/articles/323533a0"
                },
                {
                    "title": "Gradient-based learning applied to document recognition",
                    "authors": "LeCun Y., Bottou L., Bengio Y., & Haffner P.",
                    "publication": "Proceedings of the IEEE",
                    "year": "1998",
                    "url": "https://ieeexplore.ieee.org/document/726791"
                },
                {
                    "title": "Fundamental Mathematical Formulas Used in Machine Learning",
                    "authors": "Showmik Setta",
                    "publication": "Medium",
                    "year": "2023",
                    "url": "https://medium.com/@showmiklovesport/fundamental-mathematical-formulas-used-in-machine-learning-beginner-21c0843e61e0"
                }
            ]
        },
        "Extra Trees Classifier": {
            "description": """
            An ensemble method that builds multiple randomized decision trees and averages their predictions. 
            Similar to Random Forest but with additional randomization in the tree-building process.
            """,
            "pros": [
                "Lower variance than Random Forest",
                "Faster training than Random Forest",
                "Good at handling high-dimensional data",
                "Less prone to overfitting"
            ],
            "cons": [
                "May have slightly lower accuracy than Random Forest",
                "Can be memory intensive",
                "Less interpretable than single decision trees",
                "May require more trees than Random Forest"
            ],
            "use_cases": [
                "Feature selection",
                "Large dataset classification",
                "Remote sensing",
                "Biomedical classification"
            ],
            "math_details": {
                "main_formula": r"""
                \hat{f}_{et}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}_b(x)
                """,
                "component_formulas": [
                    {
                        "name": "Random Split Selection",
                        "formula": r"""
                        \text{gain}(s,D) = \frac{|D_l|}{|D|}H(D_l) + \frac{|D_r|}{|D|}H(D_r)
                        """
                    },
                    {
                        "name": "Entropy",
                        "formula": r"""
                        H(D) = -\sum_{k=1}^K p_k\log(p_k)
                        """
                    }
                ],
                "explanation": """
                - B is the number of trees
                - fᵦ is the prediction of the b-th tree
                - Dₗ and Dᵣ are left and right splits
                - pₖ is the proportion of class k in the node
                """
            },
            "references": [
                {
                    "title": "Extremely randomized trees",
                    "authors": "Geurts P., Ernst D., & Wehenkel L.",
                    "publication": "Machine Learning",
                    "year": "2006",
                    "url": "https://link.springer.com/article/10.1007/s10994-006-6226-1"
                },
                {
                    "title": "scikit-learn: Machine Learning in Python",
                    "authors": "Pedregosa et al.",
                    "publication": "Journal of Machine Learning Research",
                    "year": "2011",
                    "url": "https://jmlr.csail.mit.edu/papers/v12/pedregosa11a.html"
                },
                {
                    "title": "Fundamental Mathematical Formulas Used in Machine Learning",
                    "authors": "Showmik Setta",
                    "publication": "Medium",
                    "year": "2023",
                    "url": "https://medium.com/@showmiklovesport/fundamental-mathematical-formulas-used-in-machine-learning-beginner-21c0843e61e0"
                }
            ]
        },
        "Random Forest Classifier": {
            "description": """
            An ensemble learning method that constructs multiple decision trees and combines their predictions. 
            Each tree is built using a random subset of features and bootstrap samples of the data.
            """,
            "pros": [
                "Robust against overfitting",
                "Handles non-linear relationships well",
                "Provides feature importance",
                "Works well with high-dimensional data"
            ],
            "cons": [
                "Can be computationally intensive",
                "Less interpretable than single decision trees",
                "Memory intensive for large datasets",
                "May overfit on noisy datasets"
            ],
            "use_cases": [
                "Credit risk assessment",
                "Medical diagnosis",
                "Market prediction",
                "Image classification"
            ],
            "math_details": {
                "main_formula": r"""
                \hat{f}_{rf}(x) = \frac{1}{B}\sum_{b=1}^B \hat{f}_b(x)
                """,
                "component_formulas": [
                    {
                        "name": "Random Split Selection",
                        "formula": r"""
                        \text{gain}(s,D) = \frac{|D_l|}{|D|}H(D_l) + \frac{|D_r|}{|D|}H(D_r)
                        """
                    },
                    {
                        "name": "Entropy",
                        "formula": r"""
                        H(D) = -\sum_{k=1}^K p_k\log(p_k)
                        """
                    }
                ],
                "explanation": """
                - B is the number of trees
                - fᵦ is the prediction of the b-th tree
                - Dₗ and Dᵣ are left and right splits
                - pₖ is the proportion of class k in the node
                """
            },
            "references": [
                {
                    "title": "Random Forests",
                    "authors": "Breiman L.",
                    "publication": "Machine Learning",
                    "year": "2001",
                    "url": "https://link.springer.com/article/10.1023/A:1010933404324"
                },
                {
                    "title": "An Introduction to Statistical Learning",
                    "authors": "James G., Witten D., Hastie T., & Tibshirani R.",
                    "publication": "Springer",
                    "year": "2013",
                    "url": "https://www.statlearning.com/"
                },
                {
                    "title": "Machine Learning Algorithms: Mathematical Deep Dive",
                    "authors": "Vidushi Meel",
                    "publication": "viso.ai",
                    "year": "2021",
                    "url": "https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/"
                }
            ]
        },
        "K-Nearest Neighbors (KNeighborsClassifier)": {
            "description": """
            A non-parametric method that classifies a data point based on the majority class of its k nearest neighbors 
            in the feature space. Simple but effective algorithm.
            """,
            "pros": [
                "Simple to understand and implement",
                "No training phase",
                "Naturally handles multi-class cases",
                "Non-parametric (no assumptions about data)"
            ],
            "cons": [
                "Computationally intensive for large datasets",
                "Sensitive to irrelevant features",
                "Requires feature scaling",
                "Memory intensive (stores all training data)"
            ],
            "use_cases": [
                "Recommendation systems",
                "Pattern recognition",
                "Data imputation",
                "Anomaly detection"
            ],
            "math_details": {
                "main_formula": r"""
                \hat{f}_{knn}(x) = \frac{1}{k}\sum_{i=1}^k y_i
                """,
                "component_formulas": [
                    {
                        "name": "Distance Function",
                        "formula": r"""
                        d(x,x') = \sum_{i=1}^p |x_i - x'_i|^2
                        """
                    },
                    {
                        "name": "Decision Function",
                        "formula": r"""
                        f(x) = \text{sign}\left(\sum_{i=1}^k y_i \cdot \text{weight}(d(x,x_i))\right)
                        """
                    }
                ],
                "explanation": """
                - d(x,x') is the distance function
                - xᵢ are the k nearest neighbors
                - yᵢ are the labels of the k nearest neighbors
                - weight(d(x,x')) is the weight function based on distance
                """
            },
            "references": [
                {
                    "title": "Nearest Neighbor Pattern Classification",
                    "authors": "Cover T. & Hart P.",
                    "publication": "IEEE Transactions on Information Theory",
                    "year": "1967",
                    "url": "https://ieeexplore.ieee.org/document/1053964"
                },
                {
                    "title": "A Survey of Nearest Neighbor Techniques",
                    "authors": "Bhatia N. & Vandana",
                    "publication": "International Journal of Computer Science and Information Security",
                    "year": "2010",
                    "url": "https://arxiv.org/abs/1007.0085"
                },
                {
                    "title": "Machine Learning Algorithms: Mathematical Deep Dive",
                    "authors": "Vidushi Meel",
                    "publication": "viso.ai",
                    "year": "2021",
                    "url": "https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/"
                }
            ]
        },
        "Ridge Classifier": {
            "description": """
            A linear classifier that uses L2 regularization to prevent overfitting. Similar to logistic regression 
            but with different loss function and regularization.
            """,
            "pros": [
                "Good for multicollinear data",
                "Less prone to overfitting",
                "Computationally efficient",
                "Works well with many features"
            ],
            "cons": [
                "Only for linear classification",
                "May underfit complex patterns",
                "Sensitive to feature scaling",
                "No probability estimates"
            ],
            "use_cases": [
                "High-dimensional data classification",
                "Text classification",
                "Gene expression analysis",
                "Simple binary classification"
            ],
            "math_details": {
                "main_formula": r"""
                \min_{w} ||Xw - y||^2_2 + \alpha ||w||^2_2
                """,
                "component_formulas": [
                    {
                        "name": "Decision Function",
                        "formula": r"""
                        f(x) = w^Tx
                        """
                    },
                    {
                        "name": "L2 Penalty",
                        "formula": r"""
                        \text{penalty} = \alpha ||w||^2_2 = \alpha \sum_{j=1}^p w_j^2
                        """
                    }
                ],
                "explanation": """
                - w is the weight vector
                - α is the regularization strength
                - X is the feature matrix
                - y is the target vector
                - p is the number of features
                """
            },
            "references": [
                {
                    "title": "Ridge Regression: Biased Estimation for Nonorthogonal Problems",
                    "authors": "Hoerl A.E. & Kennard R.W.",
                    "publication": "Technometrics",
                    "year": "1970",
                    "url": "https://www.tandfonline.com/doi/abs/10.1080/00401706.1970.10488634"
                },
                {
                    "title": "The Elements of Statistical Learning",
                    "authors": "Hastie T., Tibshirani R., & Friedman J.",
                    "publication": "Springer",
                    "year": "2009",
                    "url": "https://web.stanford.edu/~hastie/ElemStatLearn/"
                },
                {
                    "title": "Fundamental Mathematical Formulas Used in Machine Learning",
                    "authors": "Showmik Setta",
                    "publication": "Medium",
                    "year": "2023",
                    "url": "https://medium.com/@showmiklovesport/fundamental-mathematical-formulas-used-in-machine-learning-beginner-21c0843e61e0"
                }
            ]
        },
        "Multinomial Naive Bayes": {
            "description": """
            A specialized version of Naive Bayes for multinomially distributed data. Commonly used for text 
            classification with word counts.
            """,
            "pros": [
                "Fast training and prediction",
                "Works well with high-dimensional data",
                "Good for text classification",
                "Handles multiple classes well"
            ],
            "cons": [
                "Assumes feature independence",
                "Requires non-negative features",
                "Sensitive to feature distribution",
                "May underperform with continuous data"
            ],
            "use_cases": [
                "Document classification",
                "Spam detection",
                "Language detection",
                "Topic modeling"
            ],
            "math_details": {
                "main_formula": r"""
                P(y|x) = \frac{P(y)\prod_{i=1}^n P(x_i|y)}{\sum_{k} P(y_k)\prod_{i=1}^n P(x_i|y_k)}
                """,
                "component_formulas": [
                    {
                        "name": "Feature Probability",
                        "formula": r"""
                        P(x_i|y) = \frac{N_{yi} + \alpha}{N_y + \alpha n}
                        """
                    },
                    {
                        "name": "Log Probability",
                        "formula": r"""
                        \log P(y|x) = \log P(y) + \sum_{i=1}^n \log P(x_i|y)
                        """
                    }
                ],
                "explanation": """
                - Nyᵢ is the count of feature i in class y
                - Ny is the total count of all features in class y
                - α is the smoothing parameter
                - n is the number of features
                """
            },
            "references": [
                {
                    "title": "A comparison of event models for naive Bayes text classification",
                    "authors": "McCallum A. & Nigam K.",
                    "publication": "AAAI-98 Workshop on Learning for Text Categorization",
                    "year": "1998",
                    "url": "https://www.cs.cmu.edu/~knigam/papers/multinomial-aaaiws98.pdf"
                },
                {
                    "title": "An empirical study of the naive Bayes classifier",
                    "authors": "Rish I.",
                    "publication": "IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence",
                    "year": "2001",
                    "url": "https://www.researchgate.net/publication/228845263_An_Empirical_Study_of_the_Naive_Bayes_Classifier"
                },
                {
                    "title": "Fundamental Mathematical Formulas Used in Machine Learning",
                    "authors": "Showmik Setta",
                    "publication": "Medium",
                    "year": "2023",
                    "url": "https://medium.com/@showmiklovesport/fundamental-mathematical-formulas-used-in-machine-learning-beginner-21c0843e61e0"
                }
            ]
        },
        "AdaBoost Classifier": {
            "description": """
            An ensemble method that builds a strong classifier by iteratively adding weak learners, focusing on 
            previously misclassified examples.
            """,
            "pros": [
                "Good generalization",
                "Less prone to overfitting",
                "Can identify hard-to-classify instances",
                "Works well with weak learners"
            ],
            "cons": [
                "Sensitive to noisy data and outliers",
                "Sequential nature (can't parallelize)",
                "Can be computationally intensive",
                "May require careful tuning"
            ],
            "use_cases": [
                "Face detection",
                "Object recognition",
                "Medical diagnosis",
                "Fraud detection"
            ],
            "math_details": {
                "main_formula": r"""
                F(x) = \text{sign}\left(\sum_{t=1}^T \alpha_t h_t(x)\right)
                """,
                "component_formulas": [
                    {
                        "name": "Weak Learner Weight",
                        "formula": r"""
                        \alpha_t = \frac{1}{2}\ln\left(\frac{1-\epsilon_t}{\epsilon_t}\right)
                        """
                    },
                    {
                        "name": "Sample Weight Update",
                        "formula": r"""
                        w_{i,t+1} = w_{i,t}\exp(-y_i\alpha_th_t(x_i))
                        """
                    }
                ],
                "explanation": """
                - hₜ(x) is the weak learner prediction
                - αₜ is the weight of weak learner t
                - εₜ is the weighted error rate
                - wᵢ,ₜ is the weight of sample i at iteration t
                """
            },
            "references": [
                {
                    "title": "A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting",
                    "authors": "Freund Y. & Schapire R.E.",
                    "publication": "Journal of Computer and System Sciences",
                    "year": "1997",
                    "url": "https://www.sciencedirect.com/science/article/pii/S002200009791504X"
                },
                {
                    "title": "Experiments with a New Boosting Algorithm",
                    "authors": "Freund Y. & Schapire R.E.",
                    "publication": "International Conference on Machine Learning",
                    "year": "1996",
                    "url": "https://icml.cc/Conferences/1996/papers/boosting.pdf"
                },
                {
                    "title": "Machine Learning Algorithms: Mathematical Deep Dive",
                    "authors": "Vidushi Meel",
                    "publication": "viso.ai",
                    "year": "2021",
                    "url": "https://viso.ai/deep-learning/machine-learning-algorithms-mathematical-guide/"
                }
            ]
        }
    }

    # Add implementation details to each algorithm
    for algo_name in algorithms:
        algorithms[algo_name]["implementation"] = {
            "Gaussian Naive Bayes (GaussianNB)": {
                "code": """
from sklearn.naive_bayes import GaussianNB
from sklearn.datasets import make_classification

# Create sample dataset
X, y = make_classification(n_samples=1000, n_features=20, n_classes=2)

# Initialize and train the model
gnb = GaussianNB()
gnb.fit(X, y)

# Make predictions
y_pred = gnb.predict(X)
                """,
                "key_parameters": {
                    "var_smoothing": "Portion of the largest variance of all features that is added to variances for calculation stability",
                    "priors": "Prior probabilities of the classes"
                },
                "tips": [
                    "Normalize features if they have very different scales",
                    "Good as a baseline model for comparison",
                    "Check feature distributions - should be roughly Gaussian"
                ]
            },
            "Linear Support Vector Classification (LinearSVC)": {
                "code": """
from sklearn.svm import LinearSVC
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
svc = LinearSVC(random_state=42, max_iter=1000)
svc.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "C": "Regularization parameter (default=1.0)",
                    "max_iter": "Maximum iterations for convergence",
                    "dual": "Dual or primal formulation"
                },
                "tips": [
                    "Always scale your features",
                    "Increase max_iter if model doesn't converge",
                    "Try different C values using cross-validation"
                ]
            },
            "Support Vector Classification (SVC)": {
                "code": """
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
svc = SVC(random_state=42)
svc.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "C": "Regularization parameter (default=1.0)",
                    "kernel": "Kernel function used to transform the data",
                    "gamma": "Kernel coefficient for 'rbf', 'poly', and 'sigmoid' kernels"
                },
                "tips": [
                    "Always scale your features",
                    "Try different kernels and gamma values",
                    "Increase C if model underfits",
                    "Decrease C if model overfits"
                ]
            },
            "Multi-layer Perceptron (MLPClassifier)": {
                "code": """
from sklearn.neural_network import MLPClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
mlp = MLPClassifier(random_state=42)
mlp.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "hidden_layer_sizes": "Number of neurons in each layer",
                    "activation": "Activation function used in the hidden layers",
                    "solver": "Optimization algorithm used to train the model",
                    "alpha": "L2 regularization parameter"
                },
                "tips": [
                    "Always scale your features",
                    "Try different activation functions",
                    "Increase hidden_layer_sizes if model underfits",
                    "Decrease hidden_layer_sizes if model overfits"
                ]
            },
            "Extra Trees Classifier": {
                "code": """
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
et = ExtraTreesClassifier(random_state=42)
et.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "n_estimators": "Number of trees in the forest",
                    "max_depth": "Maximum depth of the trees",
                    "min_samples_split": "Minimum number of samples required to split an internal node",
                    "min_samples_leaf": "Minimum number of samples required to be at a leaf node"
                },
                "tips": [
                    "Always scale your features",
                    "Try different max_depth values",
                    "Increase n_estimators if model underfits",
                    "Decrease n_estimators if model overfits"
                ]
            },
            "Random Forest Classifier": {
                "code": """
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
rf = RandomForestClassifier(random_state=42)
rf.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "n_estimators": "Number of trees in the forest",
                    "max_depth": "Maximum depth of the trees",
                    "min_samples_split": "Minimum number of samples required to split an internal node",
                    "min_samples_leaf": "Minimum number of samples required to be at a leaf node"
                },
                "tips": [
                    "Always scale your features",
                    "Try different max_depth values",
                    "Increase n_estimators if model underfits",
                    "Decrease n_estimators if model overfits"
                ]
            },
            "K-Nearest Neighbors (KNeighborsClassifier)": {
                "code": """
from sklearn.neighbors import KNeighborsClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
knn = KNeighborsClassifier()
knn.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "n_neighbors": "Number of neighbors to use",
                    "weights": "Weight function used in prediction",
                    "algorithm": "Algorithm used to compute the nearest neighbors",
                    "leaf_size": "Maximum number of samples in each leaf"
                },
                "tips": [
                    "Always scale your features",
                    "Try different n_neighbors values",
                    "Increase leaf_size if model underfits",
                    "Decrease leaf_size if model overfits"
                ]
            },
            "Ridge Classifier": {
                "code": """
from sklearn.linear_model import RidgeClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
ridge = RidgeClassifier(random_state=42)
ridge.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "alpha": "Regularization parameter (default=1.0)",
                    "solver": "Optimization algorithm used to train the model",
                    "max_iter": "Maximum number of iterations for the solver to converge"
                },
                "tips": [
                    "Always scale your features",
                    "Try different alpha values",
                    "Increase max_iter if model doesn't converge",
                    "Decrease max_iter if model overfits"
                ]
            },
            "Multinomial Naive Bayes": {
                "code": """
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
nb = MultinomialNB()
nb.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "alpha": "Regularization parameter (default=1.0)",
                    "fit_prior": "Whether to learn class prior probabilities or not",
                    "class_prior": "Prior probabilities of the classes"
                },
                "tips": [
                    "Always scale your features",
                    "Try different alpha values",
                    "Increase alpha if model underfits",
                    "Decrease alpha if model overfits"
                ]
            },
            "AdaBoost Classifier": {
                "code": """
from sklearn.ensemble import AdaBoostClassifier
from sklearn.preprocessing import StandardScaler

# Scale the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Initialize and train the model
ada = AdaBoostClassifier(random_state=42)
ada.fit(X_scaled, y)
                """,
                "key_parameters": {
                    "n_estimators": "Number of trees in the forest",
                    "learning_rate": "Learning rate used to update the weights of the weak classifiers",
                    "algorithm": "Optimization algorithm used to train the model"
                },
                "tips": [
                    "Always scale your features",
                    "Try different learning_rate values",
                    "Increase n_estimators if model underfits",
                    "Decrease n_estimators if model overfits"
                ]
            }
        }.get(algo_name, {})

    # Algorithm selector
    selected_algo = st.selectbox(
        "Select an algorithm to learn more:",
        list(algorithms.keys())
    )

    # Display algorithm information
    if selected_algo:
        st.header(selected_algo)
        
        # Description
        st.subheader("Description")
        st.write(algorithms[selected_algo]["description"])
        
        # Two-column layout for pros and cons
        col1, col2 = st.columns(2)
        
        with col1:
            st.subheader("Advantages")
            for pro in algorithms[selected_algo]["pros"]:
                st.markdown(f"✅ {pro}")
                
        with col2:
            st.subheader("Disadvantages")
            for con in algorithms[selected_algo]["cons"]:
                st.markdown(f"⚠️ {con}")
        
        # Use cases
        st.subheader("Common Use Cases")
        for use_case in algorithms[selected_algo]["use_cases"]:
            st.markdown(f"🎯 {use_case}")

        # Add mathematical details section
        st.markdown("---")
        display_math_details(algorithms[selected_algo])

        # Add visual separator
        st.markdown("---")

        # Implementation section
        if "implementation" in algorithms[selected_algo]:
            st.subheader("Implementation Example")
            
            # Code example
            st.code(algorithms[selected_algo]["implementation"]["code"], language="python")
            
            # Key Parameters
            st.subheader("Key Parameters")
            for param, desc in algorithms[selected_algo]["implementation"]["key_parameters"].items():
                st.markdown(f"**`{param}`**: {desc}")
            
            # Implementation Tips
            st.subheader("Implementation Tips")
            for tip in algorithms[selected_algo]["implementation"]["tips"]:
                st.markdown(f"💡 {tip}")

        # Add interactive demo section
        st.subheader("Interactive Demo")
        if st.checkbox("Show Interactive Demo"):
            st.write("Select dataset:")
            dataset_choice = st.selectbox(
                "Choose a sample dataset",
                ["Iris", "Breast Cancer", "Wine", "Digits"]
            )

            if st.button("Run Demo"):
                try:
                    with st.spinner("Running demo..."):
                        demo_results = run_algorithm_demo(selected_algo, dataset_choice)
                        
                        # Display results
                        st.write("Model Performance:")
                        st.write(f"Accuracy: {demo_results['accuracy']:.4f}")
                        
                        # Show confusion matrix
                        st.write("Confusion Matrix:")
                        st.pyplot(demo_results['confusion_matrix_plot'])
                        
                        # Show learning curve
                        st.write("Learning Curve:")
                        st.pyplot(demo_results['learning_curve_plot'])
                except Exception as e:
                    st.error(f"Error running demo: {str(e)}")

        # Add a references section to display in the UI
        if st.checkbox("Show References"):
            st.subheader("Academic References")
            if "references" in algorithms[selected_algo]:
                for ref in algorithms[selected_algo]["references"]:
                    st.markdown(f"**{ref['title']}**")
                    st.markdown(f"*{ref['authors']}* ({ref['year']})")
                    st.markdown(f"Published in: {ref['publication']}")
                    st.markdown(f"[Link to Publication]({ref['url']})")
                    st.markdown("---")
            else:
                st.write("No references available for this algorithm.")

def run_algorithm_demo(algorithm_name, dataset_name):
    """Run a demo of the selected algorithm on the chosen dataset."""
    from sklearn.datasets import load_iris, load_breast_cancer, load_wine, load_digits
    from sklearn.model_selection import train_test_split, learning_curve
    from sklearn.preprocessing import StandardScaler
    import matplotlib.pyplot as plt
    import seaborn as sns
    
    # Load dataset
    dataset_loaders = {
        "Iris": load_iris,
        "Breast Cancer": load_breast_cancer,
        "Wine": load_wine,
        "Digits": load_digits
    }
    
    data = dataset_loaders[dataset_name]()
    X, y = data.data, data.target
    
    # Split and scale data
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
    scaler = StandardScaler()
    X_train_scaled = scaler.fit_transform(X_train)
    X_test_scaled = scaler.transform(X_test)
    
    # Initialize and train model
    model = get_model_instance(algorithm_name)
    model.fit(X_train_scaled, y_train)
    
    # Get predictions and accuracy
    y_pred = model.predict(X_test_scaled)
    accuracy = accuracy_score(y_test, y_pred)
    
    # Create confusion matrix plot
    plt.figure(figsize=(8, 6))
    cm = confusion_matrix(y_test, y_pred)
    sns.heatmap(cm, annot=True, fmt='d', cmap='viridis')
    plt.title('Confusion Matrix')
    plt.ylabel('True Label')
    plt.xlabel('Predicted Label')
    cm_plot = plt.gcf()
    plt.close()
    
    # Create learning curve plot
    train_sizes, train_scores, test_scores = learning_curve(
        model, X_train_scaled, y_train, cv=5,
        train_sizes=np.linspace(0.1, 1.0, 5)
    )
    
    plt.figure(figsize=(8, 6))
    plt.plot(train_sizes, np.mean(train_scores, axis=1), label='Training score')
    plt.plot(train_sizes, np.mean(test_scores, axis=1), label='Cross-validation score')
    plt.xlabel('Training Examples')
    plt.ylabel('Score')
    plt.title('Learning Curve')
    plt.legend(loc='best')
    lc_plot = plt.gcf()
    plt.close()
    
    return {
        'accuracy': accuracy,
        'confusion_matrix_plot': cm_plot,
        'learning_curve_plot': lc_plot
    }

def get_model_instance(algorithm_name):
    """Return an instance of the specified algorithm."""
    models = {
        "Gaussian Naive Bayes (GaussianNB)": GaussianNB(),
        "Linear Support Vector Classification (LinearSVC)": LinearSVC(random_state=42),
        "Support Vector Classification (SVC)": SVC(random_state=42),
        "Multi-layer Perceptron (MLPClassifier)": MLPClassifier(random_state=42),
        "Extra Trees Classifier": ExtraTreesClassifier(random_state=42),
        "Random Forest Classifier": RandomForestClassifier(random_state=42),
        "K-Nearest Neighbors (KNeighborsClassifier)": KNeighborsClassifier(),
        "Ridge Classifier": RidgeClassifier(random_state=42),
        "Multinomial Naive Bayes": MultinomialNB(),
        "AdaBoost Classifier": AdaBoostClassifier(random_state=42)
    }
    return models[algorithm_name]

def display_math_details(algorithm):
    """Display mathematical details for the algorithm."""
    if "math_details" in algorithm:
        st.subheader("Mathematical Details")
        
        # Main formula
        st.write("Main Formula:")
        st.latex(algorithm["math_details"]["main_formula"])
        
        # Component formulas
        st.write("Component Formulas:")
        for component in algorithm["math_details"]["component_formulas"]:
            st.write(f"**{component['name']}:**")
            st.latex(component["formula"])
        
        # Explanation
        st.write("**Variable Explanations:**")
        st.markdown(algorithm["math_details"]["explanation"])

if __name__ == "__main__":
    setup_page_config()
    algorithm_info()