File size: 35,960 Bytes
3f7d47f
 
 
 
 
 
 
 
 
 
 
 
 
 
3836289
3f7d47f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae331cd
3f7d47f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae331cd
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
import streamlit as st
import os
import tempfile
import numpy as np
import py3Dmol
import streamlit.components.v1 as components
from io import StringIO
import time
from ase import Atoms
from ase.io import read as ase_read
import pandas as pd
import plotly.graph_objects as go
import plotly.express as px
from plotly.subplots import make_subplots
import pyfock

@st.cache_data
def load_4c2e_eri(_basis):
    ERI = Integrals.rys_4c2e_symm(basis)
    return ERI

# Set page configuration
st.set_page_config(
    page_title='PyFock GUI - Molecular Integrals',
    layout='wide',
    page_icon="⚛️",
    menu_items={
        'About': "PyFock GUI - A web interface for PyFock, a pure Python DFT code with Numba JIT acceleration"
    }
)

# === Background video styling ===
def set_css():
    st.markdown("""
        <style>
            #myVideo {
                position: fixed;
                right: 0;
                bottom: 0;
                min-width: 100%; 
                min-height: 100%;
                opacity: 0.12;
                pointer-events: none;
            }
            .content {
                position: fixed;
                bottom: 0;
                background: rgba(0, 0, 0, 0.5);
                color: #f1f1f1;
                width: 100%;
                padding: 20px;
            }
        </style>
    """, unsafe_allow_html=True)

def embed_video():
    video_link = "https://raw.githubusercontent.com/manassharma07/Website_Files_for_PyFock/main/background_video_pyfock.mp4"
    st.sidebar.markdown(f"""
        <video autoplay muted loop id="myVideo">
            <source src="{video_link}">
            Your browser does not support HTML5 video.
        </video>
    """, unsafe_allow_html=True)

set_css()
embed_video()

# Sidebar with enhanced styling (same as home page)
st.logo("https://raw.githubusercontent.com/manassharma07/PyFock/main/logo_crysx_pyfock.png", size="large", link="https://github.com/manassharma07/pyfock",)

st.sidebar.markdown("### About PyFock")
st.sidebar.markdown("""
**Pure Python DFT** with performance matching C++ codes!

**Key Advantages:**
- 100% Pure Python (including molecular integrals)
- Numba JIT acceleration
- GPU support (CUDA via CuPy)
- Near-quadratic scaling (~O(N²·⁰⁵))
- Accuracy matching PySCF (<10⁻⁷ Ha)
- Windows/Linux/MacOS compatible
- Easy pip installation
""")

st.sidebar.markdown("---")

st.sidebar.markdown("### GUI Features")
st.sidebar.markdown("""
* Run DFT in your browser
* Visualize HOMO, LUMO, density
* Compare with PySCF
* Download cube files & scripts
* Interactive 3D visualization
* Calculate molecular integrals
* No installation required!
""")

st.sidebar.markdown("---")

st.sidebar.markdown("### 🔗 Links & Resources")
st.sidebar.markdown("""
[![GitHub (PyFock)](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/manassharma07/PyFock)
[![GitHub (PyFock GUI)](https://img.shields.io/badge/GitHub-Repository-blue?logo=github)](https://github.com/manassharma07/PyFock-GUI)
[![PyPI](https://img.shields.io/badge/PyPI-Package-orange?logo=pypi)](https://pypi.org/project/pyfock/)
[![Docs](https://img.shields.io/badge/Documentation-Read-green?logo=readthedocs)](https://pyfock-docs.bragitoff.com)

📄 **Article:** *(coming soon)*

👨‍💻 **Developer:** [Manas Sharma](https://www.linkedin.com/in/manassharma07)

⭐ **Star the repo** if you find it useful!
""")

st.sidebar.markdown("---")

with st.sidebar.expander("📦 Installation Instructions for PyFock"):
    st.code("""
# Install LibXC — required by PyFock
# For Python < 3.10:
sudo apt-get install libxc-dev     # Ubuntu/Debian
pip install pylibxc2

# For Python >= 3.10:
conda install -c conda-forge pylibxc -y

# Install PyFock
pip install pyfock

# Optional: GPU support
pip install cupy-cuda12x
""", language="bash")

st.sidebar.markdown("---")

with st.sidebar.expander("⚡ Performance Highlights"):
    st.markdown("""
**CPU Performance:**
- Upto 2x faster than PySCF
- Strong scaling up to 32 cores
- ~O(N²·⁰⁵) scaling with basis functions
- Suitable for large systems (upto ~10,000 basis functions)

**GPU Acceleration:**
- Up to **14× speedup** on A100 GPU vs 4-core CPU
- Single A100 GPU handles 4000+ basis functions
- Consumer GPUs (RTX series) supported
""")

st.sidebar.markdown("---")
st.sidebar.markdown("*Made with PyFock by PhysWhiz*")
st.sidebar.markdown("*Pure Python • Numba JIT • GPU Ready*")


# Initialize session state
if 'results' not in st.session_state:
    st.session_state.results = None
if 'timings' not in st.session_state:
    st.session_state.timings = None
if 'n_basis' not in st.session_state:
    st.session_state.n_basis = None
if 'calculation_done' not in st.session_state:
    st.session_state.calculation_done = False
# Helper functions
def _parse_xyz_to_atoms(xyz_text):
    return ase_read(StringIO(xyz_text), format='xyz')

def get_structure_viz2(atoms_obj, style='stick', width=400, height=400):
    xyz_str = ""
    xyz_str += f"{len(atoms_obj)}\n"
    xyz_str += "Structure\n"
    for atom in atoms_obj:
        sym = atom.symbol if hasattr(atom, 'symbol') else atom.get_chemical_symbols()[0]
        pos = atom.position if hasattr(atom, 'position') else atom.position
        xyz_str += f"{sym} {pos[0]:.6f} {pos[1]:.6f} {pos[2]:.6f}\n"
    view = py3Dmol.view(width=width, height=height)
    view.addModel(xyz_str, "xyz")
    if style.lower() == 'ball-stick':
        view.setStyle({'stick': {'radius': 0.2}, 'sphere': {'scale': 0.3}})
    elif style.lower() == 'stick':
        view.setStyle({'stick': {}})
    elif style.lower() == 'ball':
        view.setStyle({'sphere': {'scale': 0.4}})
    else:
        view.setStyle({'stick': {'radius': 0.15}})
    view.zoomTo()
    view.setBackgroundColor('white')
    return view

# Example molecules (same as home page)
EXAMPLE_MOLECULES = {
    "Water": """3
Water molecule
O     0.000000    0.000000    0.117790
H     0.000000    0.755453   -0.471161
H     0.000000   -0.755453   -0.471161""",

    "Acetone": """10
Acetone molecule
O       0.000247197289657     -1.311344859924947      0.000033372829371
C       0.000008761532627     -0.103796835732344      0.000232428229233
C       1.285011287026515      0.689481114475586     -0.000005118102586
C      -1.285310305026895      0.688972899031773     -0.000008308924344
H       1.326033303131908      1.335179621002258     -0.879574382138206
H       1.324106820690737      1.339904097018082      0.876116213728557
H       2.136706543431990      0.014597477886500      0.002551051783708
H      -2.136748467815155      0.013761611436540      0.002550873429523
H      -1.326572603227431      1.334639056170679     -0.879590243114624
H      -1.324682534264540      1.339405821389821      0.876094109485741""",

    "Methane": """5
Methane molecule
C     0.000000    0.000000    0.000000
H     0.629118    0.629118    0.629118
H    -0.629118   -0.629118    0.629118
H    -0.629118    0.629118   -0.629118
H     0.629118   -0.629118   -0.629118""",
    
    "Benzene": """12
Benzene molecule
C     1.395890    0.000000    0.000000
C     0.697945    1.209021    0.000000
C    -0.697945    1.209021    0.000000
C    -1.395890    0.000000    0.000000
C    -0.697945   -1.209021    0.000000
C     0.697945   -1.209021    0.000000
H     2.482610    0.000000    0.000000
H     1.241305    2.149540    0.000000
H    -1.241305    2.149540    0.000000
H    -2.482610    0.000000    0.000000
H    -1.241305   -2.149540    0.000000
H     1.241305   -2.149540    0.000000""",

    "Ammonia": """4
Ammonia molecule
N     0.000000    0.000000    0.100000
H     0.945000    0.000000   -0.266000
H    -0.472500    0.818000   -0.266000
H    -0.472500   -0.818000   -0.266000""",

    "Carbon Dioxide": """3
Carbon dioxide molecule
C     0.000000    0.000000    0.000000
O     0.000000    0.000000    1.160000
O     0.000000    0.000000   -1.160000""",

    "Hydrogen Peroxide": """4
Hydrogen peroxide molecule
O     0.000000    0.000000    0.000000
O     1.450000    0.000000    0.000000
H     0.000000    0.930000    0.000000
H     1.450000   -0.930000    0.000000""",

    "Formaldehyde": """4
Formaldehyde molecule
C     0.000000    0.000000    0.000000
O     1.200000    0.000000    0.000000
H    -0.550000    0.940000    0.000000
H    -0.550000   -0.940000    0.000000""",

    "Hydrogen Sulfide": """3
Hydrogen sulfide molecule
S     0.000000    0.000000    0.000000
H     0.960000    0.000000    0.000000
H    -0.480000    0.830000    0.000000""",
}

BASIS_SETS = ["sto-3g", "sto-6g", "3-21G", "4-31G", "6-31G", "6-31+G", "6-31++G", "cc-pvDZ", "def2-SVP", "def2-TZVP"]
AUXBASIS_SETS = ["def2-universal-jkfit", "def2-universal-jfit", "sto-3g", "def2-SVP", "6-31G"]

# Main title
st.title("🧮 PyFock - Molecular Integrals Calculator")
st.markdown("""
Explore the fundamental quantum mechanical integrals that form the basis of electronic structure calculations.
Learn how overlap, kinetic, nuclear attraction, and electron repulsion integrals are computed!
""")
st.markdown("---")

# Input section
st.header("1. System Setup")

col1, col2 = st.columns([1.3, 1])

with col1:
    st.subheader("Molecule Input")
    
    molecule_choice = st.selectbox(
        "Select example molecule or paste custom XYZ:",
        [
            "Water",
            "Acetone",
            "Methane",
            "Benzene",
            "Ammonia",
            "Carbon Dioxide",
            "Hydrogen Peroxide",
            "Formaldehyde",
            "Hydrogen Sulfide",
            "Custom"
        ]
    )
    
    if molecule_choice == "Custom":
        xyz_content = st.text_area(
            "Paste XYZ coordinates:",
            height=200,
            placeholder="3\nWater molecule\nO 0.0 0.0 0.0\nH 0.757 0.586 0.0\nH -0.757 0.586 0.0"
        )
    else:
        xyz_content = st.text_area(
            "XYZ coordinates:",
            value=EXAMPLE_MOLECULES[molecule_choice],
            height=200
        )

with col2:
    if xyz_content and xyz_content.strip():
        st.markdown("### Molecule Visualization")
        viz_style = st.selectbox("Select Visualization Style:", ["ball-stick", "stick", "ball"], key="viz_style_select")
        atoms_obj = _parse_xyz_to_atoms(xyz_content)
        
        view_3d = get_structure_viz2(atoms_obj, style=viz_style, width=400, height=400)
        try:
            st.components.v1.html(view_3d._make_html(), width=420, height=420)
        except Exception:
            t = view_3d.js()
            html_content = f"{t.startjs}{t.endjs}"
            components.html(html_content, height=420, width=420)

        st.markdown("### Structure Information")
        atoms_info = {
            "Number of Atoms": len(atoms_obj),
            "Chemical Formula": atoms_obj.get_chemical_formula() if hasattr(atoms_obj, 'get_chemical_formula') else "".join(atoms_obj.get_chemical_symbols()),
            "Atom Types": ", ".join(sorted(list(set(atoms_obj.get_chemical_symbols()))))
        }
        
        for key, value in atoms_info.items():
            st.write(f"**{key}:** {value}")

with col1:
    st.subheader("Basis Set Configuration")
    basis_set = st.selectbox("Basis Set:", BASIS_SETS, index=0)
    auxbasis_set = st.selectbox("Basis Set:", AUXBASIS_SETS, index=0)
    use_spherical = st.checkbox("Convert to Spherical AOs (SAO)", value=False, 
                                help="Convert 1e integrals from Cartesian AOs (CAO) to Spherical AOs (SAO)")

st.markdown("---")

# Integral selection
st.header("2. Select Integrals to Calculate")

col3, col4 = st.columns(2)

with col3:
    st.subheader("One-Electron Integrals")
    calc_overlap = st.checkbox("Overlap Integrals (S)", value=True,
                               help="⟨φᵢ|φⱼ⟩ - Measures orbital overlap")
    calc_kinetic = st.checkbox("Kinetic Energy Integrals (T)", value=True,
                               help="⟨φᵢ|-½∇²|φⱼ⟩ - Kinetic energy operator")
    calc_nuclear = st.checkbox("Nuclear Attraction Integrals (V)", value=True,
                               help="⟨φᵢ|-Σ Zₐ/rₐ|φⱼ⟩ - Electron-nuclear attraction")

with col4:
    st.subheader("Two-Electron Integrals")
    calc_eri_4c2e = st.checkbox("4-Center 2-Electron (ERI)", value=False,
                                help="⟨φᵢφⱼ|1/r₁₂|φₖφₗ⟩ - Electron-electron repulsion")
    
    # if calc_eri_4c2e:
    #     eri_algorithm = st.radio("Algorithm:", ["Rys Quadrature (Fast)", "Conventional (Slow)"],
    #                             help="Rys quadrature is significantly faster for most systems")
    
    calc_eri_3c2e = st.checkbox("3-Center 2-Electron (3c2e)", value=False,
                                help="Used in density fitting / RI approximations")
    calc_eri_2c2e = st.checkbox("2-Center 2-Electron (2c2e)", value=False,
                                help="Auxiliary basis integrals for density fitting")

# Subset selection
# st.subheader("Optional: Calculate Subset of Matrix")
# use_subset = st.checkbox("Calculate only a subset of the integral matrix", value=False)
use_subset = False
# if use_subset:
#     col5, col6, col7, col8 = st.columns(4)
#     with col5:
#         row_start = st.number_input("Row Start:", min_value=0, value=0, step=1)
#     with col6:
#         row_end = st.number_input("Row End:", min_value=1, value=5, step=1)
#     with col7:
#         col_start = st.number_input("Col Start:", min_value=0, value=0, step=1)
#     with col8:
#         col_end = st.number_input("Col End:", min_value=1, value=5, step=1)

st.markdown("---")

# Calculate button
# if st.button("🧮 Calculate Integrals", type="primary"):
    
if not xyz_content.strip():
    st.error("Please provide XYZ coordinates!")
    st.stop()

# Check if at least one integral type is selected
if not any([calc_overlap, calc_kinetic, calc_nuclear, calc_eri_4c2e, calc_eri_3c2e, calc_eri_2c2e]):
    st.error("Please select at least one integral type to calculate!")
    st.stop()


# Calculate button
if st.button("🧮 Calculate Integrals", type="primary", use_container_width=True):
    progress_bar = st.progress(0)
    status_text = st.empty()
    try:
        status_text.text("Importing PyFock modules...")
        progress_bar.progress(10)
        
        from pyfock import Basis, Mol, Integrals
        
        status_text.text("Creating molecule object...")
        progress_bar.progress(20)
        
        with tempfile.NamedTemporaryFile(mode='w', suffix='.xyz', delete=False) as f:
            f.write(xyz_content)
            xyz_file = f.name
        
        mol = Mol(coordfile=xyz_file)
        
        status_text.text(f"Loading basis set: {basis_set}...")
        progress_bar.progress(30)
        
        basis = Basis(mol, {'all': Basis.load(mol=mol, basis_name=basis_set)})
        auxbasis = Basis(mol, {'all': Basis.load(mol=mol, basis_name=auxbasis_set)})
        
        n_basis = basis.bfs_nao
        st.info(f"✓ System has {n_basis} basis functions")
        if n_basis > 40:
            st.error(f"❌ This system has {n_basis} basis functions, exceeding the limit of 40. Please use a smaller basis set or fewer atoms.")
            os.unlink(xyz_file)
            st.stop()
        
        # Prepare results storage
        results = {}
        timings = {}
        
        # Setup subset slice if needed
        if use_subset:
            subset_slice = [row_start, row_end, col_start, col_end]
        else:
            subset_slice = None
        
        progress_step = 40
        progress_increment = 50 / sum([calc_overlap, calc_kinetic, calc_nuclear, 
                                        calc_eri_4c2e, calc_eri_3c2e, calc_eri_2c2e])
        
        # Calculate one-electron integrals
        if calc_overlap:
            status_text.text("Calculating overlap integrals...")
            start = time.time()
            if subset_slice:
                S = Integrals.overlap_mat_symm(basis, slice=subset_slice)
            else:
                S = Integrals.overlap_mat_symm(basis)
            
            if use_spherical:
                c2sph_mat = basis.cart2sph_basis()
                S = np.dot(c2sph_mat, np.dot(S, c2sph_mat.T))
            
            results['Overlap'] = S
            timings['Overlap'] = time.time() - start
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        if calc_kinetic:
            status_text.text("Calculating kinetic energy integrals...")
            start = time.time()
            if subset_slice:
                T = Integrals.kin_mat_symm(basis, slice=subset_slice)
            else:
                T = Integrals.kin_mat_symm(basis)
            
            if use_spherical:
                c2sph_mat = basis.cart2sph_basis()
                T = np.dot(c2sph_mat, np.dot(T, c2sph_mat.T))
            
            results['Kinetic'] = T
            timings['Kinetic'] = time.time() - start
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        if calc_nuclear:
            status_text.text("Calculating nuclear attraction integrals...")
            start = time.time()
            if subset_slice:
                V = Integrals.nuc_mat_symm(basis, mol, slice=subset_slice)
            else:
                V = Integrals.nuc_mat_symm(basis, mol)
            
            if use_spherical:
                c2sph_mat = basis.cart2sph_basis()
                V = np.dot(c2sph_mat, np.dot(V, c2sph_mat.T))
            
            results['Nuclear'] = V
            timings['Nuclear'] = time.time() - start
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        # Calculate two-electron integrals
        if calc_eri_4c2e:
            if n_basis > 25:
                st.warning("⚠️ 4c2e integral calculation for more than 25 basis functions will be too slow for running on the cloud. Download the app and run on your system.")
                calc_eri_4c2e = False
            else:
                status_text.text("Calculating 4c2e integrals (this may take a while)...")
                start = time.time()
                ERI = Integrals.rys_4c2e_symm(basis)
                # ERI = load_4c2e_eri(basis)
                timings['4c2e'] = time.time() - start
                results['4c2e'] = ERI
            
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        if calc_eri_3c2e:
            status_text.text("Calculating 3c2e integrals...")
            start = time.time()
            ERI_3c = Integrals.rys_3c2e_symm(basis, auxbasis)
            results['3c2e'] = ERI_3c
            timings['3c2e'] = time.time() - start
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        if calc_eri_2c2e:
            status_text.text("Calculating 2c2e integrals...")
            start = time.time()
            ERI_2c = Integrals.rys_2c2e_symm(basis)
            results['2c2e'] = ERI_2c
            timings['2c2e'] = time.time() - start
            progress_step += progress_increment
            progress_bar.progress(int(progress_step))
        
        progress_bar.progress(100)
        status_text.text("✅ All calculations completed!")
        # Store results in session state
        st.session_state.results = results
        st.session_state.timings = timings
        st.session_state.calculation_done = True
    except ImportError as e:
            st.error(f"❌ Import Error: {str(e)}")
            st.info("Make sure PyFock is installed: `pip install pyfock`")
            progress_bar.empty()
            status_text.empty()
    except Exception as e:
        st.error(f"❌ Calculation failed: {str(e)}")
        import traceback
        st.code(traceback.format_exc())
        progress_bar.empty()
        status_text.empty()
    # Cleanup
    os.unlink(xyz_file)
        
    
        
    if 'xyz_file' in locals():
        try:
            os.unlink(xyz_file)
        except:
            pass
# Display results if calculation has been done
if st.session_state.calculation_done and st.session_state.results is not None:
    
    results = st.session_state.results
    timings = st.session_state.timings
    st.success("✅ Integral calculations completed successfully!")
    
    # Display results
    st.header("3. Results")
    
    # Timing summary
    st.subheader("Computation Times")
    timing_cols = st.columns(len(timings))
    for idx, (name, timing) in enumerate(timings.items()):
        with timing_cols[idx]:
            st.metric(name, f"{timing:.4f} s")
    
    st.markdown("---")
    
    # Display each integral type
    for integral_name, integral_matrix in results.items():
        st.subheader(f"{integral_name} Integrals")
        
        # Educational information
        with st.expander(f"ℹ️ About {integral_name} Integrals"):
            if integral_name == "Overlap":
                st.markdown("""
                **Overlap Integrals (S)**
                
                The overlap integral measures how much two basis functions overlap in space:
                
                $$S_{ij} = \\langle \\phi_i | \\phi_j \\rangle = \\int \\phi_i(\\mathbf{r}) \\phi_j(\\mathbf{r}) d\\mathbf{r}$$
                
                - Diagonal elements (Sᵢᵢ) equal 1 for normalized basis functions
                - Off-diagonal elements indicate orbital overlap
                - Essential for orthogonalization and transformation to orthonormal basis
                - Used in Löwdin or canonical orthogonalization schemes
                """)
            elif integral_name == "Kinetic":
                st.markdown("""
                **Kinetic Energy Integrals (T)**
                
                Represents the kinetic energy operator in the basis function representation:
                
                $$T_{ij} = \\langle \\phi_i | -\\frac{1}{2}\\nabla^2 | \\phi_j \\rangle$$
                
                - Contains the electronic kinetic energy contribution
                - Always positive (kinetic energy is positive definite)
                - Diagonal elements are largest (self-kinetic energy)
                - Critical for total electronic energy calculations
                """)
            elif integral_name == "Nuclear":
                st.markdown("""
                **Nuclear Attraction Integrals (V)**
                
                Represents electron-nuclear attraction energy:
                
                $$V_{ij} = \\langle \\phi_i | -\\sum_A \\frac{Z_A}{r_A} | \\phi_j \\rangle$$
                
                - Sum over all nuclei A with charge Zₐ
                - Always negative (attractive interaction)
                - Largest near nuclear positions
                - Molecular geometry dependent
                """)
            elif integral_name == "4c2e":
                st.markdown("""
                **Four-Center Two-Electron Repulsion Integrals (ERI)**
                
                The most computationally expensive integrals in quantum chemistry:
                
                $$ERI_{ijkl} = \\langle \\phi_i \\phi_j | \\frac{1}{r_{12}} | \\phi_k \\phi_l \\rangle$$
                
                - Four-index tensor: scales as O(N⁴) with basis size
                - Symmetries reduce unique elements: (ij|kl) = (ji|kl) = (ij|lk) = (kl|ij)
                - Used for electron-electron repulsion (Coulomb and exchange)
                """)
            elif integral_name == "3c2e":
                st.markdown("""
                **Three-Center Two-Electron Integrals**
                
                Used in density fitting (RI) approximations:
                
                $$(\\phi_i \\phi_j | P)$$
                
                - Three indices instead of four
                - Auxiliary basis function P
                - Enables efficient approximation of 4c2e integrals
                - Critical for linear-scaling DFT methods
                """)
            elif integral_name == "2c2e":
                st.markdown("""
                **Two-Center Two-Electron Integrals**
                
                Coulomb metric in auxiliary basis:
                
                $$(P | Q)$$
                
                - Two-index matrix
                - Auxiliary basis only
                - Used in density fitting inverse metric
                - Much smaller than full ERI tensor
                """)
        
        # Matrix visualization
        col_a, col_b = st.columns([1.5, 1])
        
        with col_a:
            st.markdown("**Matrix Visualization**")
            
            # Handle different dimensionalities
            if len(integral_matrix.shape) == 2:
                # 2D matrix (one-electron integrals or 2c2e)
                fig = px.imshow(integral_matrix, 
                                color_continuous_scale='RdBu_r',
                                aspect='auto',
                                labels={'x': 'Basis Function j', 'y': 'Basis Function i', 'color': 'Value'})
                fig.update_layout(height=400, title=f"{integral_name} Matrix Heatmap")
                st.plotly_chart(fig, use_container_width=True)
                
            elif len(integral_matrix.shape) == 3:
                # 3D tensor (3c2e)
                st.info("3D tensor - showing slice along first auxiliary basis index")
                slice_idx = st.slider(f"Auxiliary basis index:", 0, integral_matrix.shape[0]-1, 0)
                fig = px.imshow(integral_matrix[slice_idx], 
                                color_continuous_scale='RdBu_r',
                                aspect='auto',
                                labels={'x': 'Basis Function j', 'y': 'Basis Function i', 'color': 'Value'})
                fig.update_layout(height=400, title=f"{integral_name} Matrix (Slice {slice_idx})")
                st.plotly_chart(fig, use_container_width=True)
                
            elif len(integral_matrix.shape) == 4:
                # 4D tensor (4c2e)
                st.info("4D tensor - showing 2D slice")
                col_s1, col_s2 = st.columns(2)
                with col_s1:
                    k_idx = st.slider("Index k:", 0, integral_matrix.shape[2]-1, 0, key='k_idx')
                with col_s2:
                    l_idx = st.slider("Index l:", 0, integral_matrix.shape[3]-1, 0, key='l_idx')
                
                fig = px.imshow(integral_matrix[:, :, k_idx, l_idx],
                                color_continuous_scale='RdBu_r',
                                aspect='auto',
                                labels={'x': 'Basis Function j', 'y': 'Basis Function i', 'color': 'Value'})
                fig.update_layout(height=400, title=f"{integral_name} Matrix (k={k_idx}, l={l_idx})")
                st.plotly_chart(fig, use_container_width=True)
        
        with col_b:
            st.markdown("**Matrix Statistics**")
            
            # Calculate statistics based on dimensionality
            if len(integral_matrix.shape) == 2:
                mat_stats = {
                    "Shape": f"{integral_matrix.shape[0]} × {integral_matrix.shape[1]}",
                    "Max Value": f"{np.max(integral_matrix):.6e}",
                    "Min Value": f"{np.min(integral_matrix):.6e}",
                    "Mean": f"{np.mean(integral_matrix):.6e}",
                    "Std Dev": f"{np.std(integral_matrix):.6e}",
                    "Frobenius Norm": f"{np.linalg.norm(integral_matrix):.6e}"
                }
                
                # Check symmetry for 2D matrices
                if integral_matrix.shape[0] == integral_matrix.shape[1]:
                    symmetry_error = np.max(np.abs(integral_matrix - integral_matrix.T))
                    mat_stats["Symmetry Error"] = f"{symmetry_error:.6e}"
                    
                    # Check if matrix is positive definite (for overlap)
                    if integral_name == "Overlap":
                        eigenvalues = np.linalg.eigvalsh(integral_matrix)
                        mat_stats["Min Eigenvalue"] = f"{np.min(eigenvalues):.6e}"
                        mat_stats["Condition Number"] = f"{np.max(eigenvalues)/np.min(eigenvalues):.2e}"
                
            elif len(integral_matrix.shape) == 3:
                mat_stats = {
                    "Shape": f"{integral_matrix.shape[0]} × {integral_matrix.shape[1]} × {integral_matrix.shape[2]}",
                    "Total Elements": f"{integral_matrix.size:,}",
                    "Max Value": f"{np.max(integral_matrix):.6e}",
                    "Min Value": f"{np.min(integral_matrix):.6e}",
                    "Mean": f"{np.mean(integral_matrix):.6e}",
                    "Memory": f"{integral_matrix.nbytes / 1024:.2f} KB"
                }
                
            elif len(integral_matrix.shape) == 4:
                mat_stats = {
                    "Shape": f"{integral_matrix.shape[0]} × {integral_matrix.shape[1]} × {integral_matrix.shape[2]} × {integral_matrix.shape[3]}",
                    "Total Elements": f"{integral_matrix.size:,}",
                    "Max Value": f"{np.max(integral_matrix):.6e}",
                    "Min Value": f"{np.min(integral_matrix):.6e}",
                    "Mean": f"{np.mean(integral_matrix):.6e}",
                    "Memory": f"{integral_matrix.nbytes / (1024*1024):.2f} MB"
                }
                
                # Note about 8-fold symmetry
                st.info("**Symmetry**: ERI tensor has 8-fold permutational symmetry")
            
            for key, value in mat_stats.items():
                st.write(f"**{key}:** {value}")
        
        # Matrix data table (expandable)
        with st.expander(f"📊 View {integral_name} Matrix Data"):
            if len(integral_matrix.shape) == 2:
                df = pd.DataFrame(integral_matrix)
                df.columns = [f"j={i}" for i in range(df.shape[1])]
                df.index = [f"i={i}" for i in range(df.shape[0])]
                st.dataframe(df, use_container_width=True, height=400)
            else:
                st.write(f"Shape: {integral_matrix.shape}")
                st.write("Full tensor too large to display as table. Use visualization above.")
                
                # Option to view specific elements
                st.markdown("**Query Specific Element:**")
                if len(integral_matrix.shape) == 3:
                    col_q1, col_q2, col_q3 = st.columns(3)
                    with col_q1:
                        q_i = st.number_input("Index i:", 0, integral_matrix.shape[0]-1, 0, key=f"q_i_{integral_name}")
                    with col_q2:
                        q_j = st.number_input("Index j:", 0, integral_matrix.shape[1]-1, 0, key=f"q_j_{integral_name}")
                    with col_q3:
                        q_k = st.number_input("Index k:", 0, integral_matrix.shape[2]-1, 0, key=f"q_k_{integral_name}")
                    st.write(f"**Value [{q_i},{q_j},{q_k}]:** {integral_matrix[q_i, q_j, q_k]:.8e}")
                
                elif len(integral_matrix.shape) == 4:
                    col_q1, col_q2, col_q3, col_q4 = st.columns(4)
                    with col_q1:
                        q_i = st.number_input("Index i:", 0, integral_matrix.shape[0]-1, 0, key=f"q_i_{integral_name}")
                    with col_q2:
                        q_j = st.number_input("Index j:", 0, integral_matrix.shape[1]-1, 0, key=f"q_j_{integral_name}")
                    with col_q3:
                        q_k = st.number_input("Index k:", 0, integral_matrix.shape[2]-1, 0, key=f"q_k_{integral_name}")
                    with col_q4:
                        q_l = st.number_input("Index l:", 0, integral_matrix.shape[3]-1, 0, key=f"q_l_{integral_name}")
                    st.write(f"**Value [{q_i},{q_j},{q_k},{q_l}]:** {integral_matrix[q_i, q_j, q_k, q_l]:.8e}")
        
        
        st.markdown("---")
    
    # Educational insights section
    if calc_overlap and calc_kinetic and calc_nuclear:
        st.header("4. Educational Insights")
        
        st.subheader("Core Hamiltonian Matrix (H_core)")
        st.markdown("""
        The core Hamiltonian combines kinetic and nuclear attraction integrals:
        
        $H^{\\text{core}}_{ij} = T_{ij} + V_{ij}$
        
        This represents the one-electron part of the Hamiltonian in the Hartree-Fock and DFT methods.
        """)
        
        H_core = results['Kinetic'] + results['Nuclear']
        
        col_h1, col_h2 = st.columns([1.5, 1])
        
        with col_h1:
            fig = px.imshow(H_core,
                            color_continuous_scale='RdBu_r',
                            aspect='auto',
                            labels={'x': 'Basis Function j', 'y': 'Basis Function i', 'color': 'Energy (Ha)'})
            fig.update_layout(height=400, title="Core Hamiltonian Matrix")
            st.plotly_chart(fig, use_container_width=True)
        
        with col_h2:
            st.markdown("**Properties:**")
            eigenvalues = np.linalg.eigvalsh(H_core)
            st.write(f"**Lowest eigenvalue:** {np.min(eigenvalues):.6f} Ha")
            st.write(f"**Highest eigenvalue:** {np.max(eigenvalues):.6f} Ha")
            st.write(f"**Energy range:** {np.max(eigenvalues) - np.min(eigenvalues):.6f} Ha")
            
            # Eigenvalue distribution
            fig_eig = go.Figure()
            fig_eig.add_trace(go.Scatter(
                x=list(range(len(eigenvalues))),
                y=eigenvalues * 27.2114,  # Convert to eV
                mode='markers+lines',
                name='Eigenvalues'
            ))
            fig_eig.update_layout(
                title="Core Hamiltonian Eigenvalues",
                xaxis_title="Index",
                yaxis_title="Energy (eV)",
                height=300
            )
            st.plotly_chart(fig_eig, use_container_width=True)
    
    


# Initial instructions
st.info("👆 Configure your molecule and select integrals to calculate above!")

st.markdown("""
### About Molecular Integrals

Molecular integrals are the fundamental building blocks of quantum chemistry calculations. This tool allows you to:

1. **Calculate different types of integrals** - from simple overlap to complex four-center electron repulsion integrals
2. **Visualize integral matrices** - see the structure and patterns in the data
3. **Learn quantum chemistry** - educational explanations for each integral type
4. **Export results** - download matrices for further analysis

### Types of Integrals

**One-Electron Integrals:**
- **Overlap (S)**: Measures basis function overlap
- **Kinetic (T)**: Electronic kinetic energy
- **Nuclear (V)**: Electron-nuclear attraction

**Two-Electron Integrals:**
- **4c2e (ERI)**: Four-center electron repulsion - the most computationally intensive
- **3c2e**: Three-center integrals for density fitting
- **2c2e**: Two-center auxiliary basis integrals

### Performance Tips

- Start with small molecules and minimal basis sets (sto-3g)
- 4c2e integrals scale as O(N⁴) - they become very large quickly
- Consider using subsets for exploration of large systems

### Educational Use

This tool is perfect for:
- Learning how basis functions interact
- Understanding the structure of integral matrices
- Exploring symmetries in quantum chemistry
- Teaching computational chemistry concepts
- Comparing different computational methods
""")

# Footer
st.markdown("---")
st.markdown("""
<div style='text-align: center'>
    <p>PyFock Molecular Integrals Calculator</p>
    <p>⚡ Fast • 🎯 Accurate • 🐍 Pure Python</p>
</div>
""", unsafe_allow_html=True)

st.sidebar.write('PyFock version being used for this GUI:', pyfock.__version__)