File size: 18,536 Bytes
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fe29d
f04e267
 
e0fe29d
f04e267
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
1f1baf3
f04e267
1f1baf3
f04e267
1f1baf3
e0fe29d
1f1baf3
e0fe29d
 
 
1f1baf3
f04e267
 
e0fe29d
f04e267
 
e0fe29d
 
 
 
 
 
 
 
 
 
1f1baf3
 
e0fe29d
1f1baf3
e0fe29d
 
 
1f1baf3
e0fe29d
1f1baf3
 
 
e0fe29d
f04e267
 
 
 
 
 
 
 
1f1baf3
e0fe29d
 
1f1baf3
e0fe29d
 
f04e267
e0fe29d
 
1f1baf3
 
e0fe29d
 
 
f04e267
 
 
 
 
 
e0fe29d
 
f04e267
 
 
 
 
 
1f1baf3
f04e267
 
e0fe29d
 
f04e267
 
 
 
 
 
e0fe29d
f04e267
 
 
e0fe29d
 
 
f04e267
 
 
 
1f1baf3
 
 
 
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
e0fe29d
f04e267
 
 
 
 
 
e0fe29d
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fe29d
f04e267
 
 
 
 
 
 
 
e0fe29d
f04e267
e0fe29d
 
 
 
 
 
f04e267
 
 
 
e0fe29d
f04e267
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1baf3
f04e267
1f1baf3
f04e267
1f1baf3
f04e267
1f1baf3
f04e267
 
 
 
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f1baf3
f04e267
 
 
 
 
 
 
 
 
 
 
e0fe29d
 
f04e267
 
 
 
 
1f1baf3
 
 
f04e267
 
 
 
 
 
 
e0fe29d
f04e267
 
 
 
 
e0fe29d
f04e267
 
 
 
e0fe29d
 
f04e267
 
e0fe29d
f04e267
 
 
 
 
 
 
 
e0fe29d
f04e267
 
 
 
e0fe29d
f04e267
e0fe29d
f04e267
e0fe29d
f04e267
 
 
 
e0fe29d
 
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
e0fe29d
f04e267
e0fe29d
 
 
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fe29d
f04e267
 
e0fe29d
 
f04e267
e0fe29d
f04e267
 
 
 
e0fe29d
f04e267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e0fe29d
f04e267
 
 
 
 
e0fe29d
f04e267
 
 
e0fe29d
 
f04e267
e0fe29d
f04e267
e0fe29d
f04e267
 
 
 
e0fe29d
f04e267
 
 
 
e0fe29d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import gradio as gr
import sympy as sp
from pix2text import Pix2Text
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import re
import io
import logging

# Configure logging for debugging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Define symbolic variables
x, y = sp.symbols('x y')

# Initialize Pix2Text model globally
try:
    p2t_model = Pix2Text.from_config()
    logger.info("Pix2Text model loaded successfully")
except Exception as e:
    logger.error(f"Failed to load Pix2Text model: {e}")
    p2t_model = None

def clean_latex_expression(latex_str):
    """Clean and normalize LaTeX expression for SymPy parsing"""
    if not latex_str:
        return ""
    
    latex_str = latex_str.strip()
    latex_str = re.sub(r'^\$\$|\$\$$', '', latex_str)  # Remove $$ delimiters
    latex_str = re.sub(r'\\[a-zA-Z]+\{([^}]*)\}', r'\1', latex_str)  # Remove LaTeX commands
    latex_str = re.sub(r'\\{2,}', r'\\', latex_str)  # Fix multiple backslashes
    latex_str = re.sub(r'\s+', ' ', latex_str)  # Normalize whitespace
    latex_str = re.sub(r'\^{([^}]+)}', r'**\1', latex_str)  # Convert x^{n} to x**n
    latex_str = re.sub(r'(\d*\.?\d+)\s*([xy])', r'\1*\2', latex_str)  # Add multiplication: 1.0x -> 1.0*x
    latex_str = re.sub(r'\s*([+\-*/=])\s*', r'\1', latex_str)  # Remove spaces around operators
    if '=' in latex_str:
        left, right = latex_str.split('=')
        latex_str = f"{left} - ({right})"  # Move right-hand side to left
    return latex_str.strip()

def parse_equation_type(latex_str):
    """Determine if the equation is polynomial (single-variable) or linear system (two-variable)"""
    try:
        cleaned = clean_latex_expression(latex_str)
        if not cleaned:
            return 'polynomial'

        # Check for two-variable system
        if 'y' in cleaned and 'x' in cleaned:
            if '\\\\' in latex_str or '\n' in latex_str or len(re.split(r'\\\\|\n|;', latex_str)) >= 2:
                return 'linear_system'
            return 'linear'  # Single equation with x and y

        # Check for single-variable polynomial
        try:
            expr = sp.sympify(cleaned.split('-')[0] if '-' in cleaned else cleaned)
            if x in expr.free_symbols and y not in expr.free_symbols:
                degree = sp.degree(expr, x)
                return 'polynomial' if degree > 0 else 'linear'
            elif x not in expr.free_symbols and y in expr.free_symbols:
                return 'polynomial'  # Treat as polynomial in y if x is absent
            else:
                return 'polynomial'  # Default to polynomial if no clear variables
        except:
            if 'x**' in cleaned or '^' in latex_str:
                return 'polynomial'
            return 'polynomial'  # Fallback to polynomial
    except Exception as e:
        logger.error(f"Error determining equation type: {e}")
        return 'polynomial'

def extract_polynomial_coefficients(latex_str):
    """Extract polynomial coefficients from LaTeX string"""
    try:
        cleaned = clean_latex_expression(latex_str)
        if '-' in cleaned:
            cleaned = cleaned.split('-')[0].strip()  # Use left side for polynomial

        expr = sp.sympify(cleaned, evaluate=False)
        if x not in expr.free_symbols and y not in expr.free_symbols:
            raise ValueError("No variable (x or y) found in expression")
        
        variable = x if x in expr.free_symbols else y
        degree = sp.degree(expr, variable)
        if degree < 1 or degree > 8:
            raise ValueError(f"Polynomial degree {degree} is out of supported range (1-8)")

        poly = sp.Poly(expr, variable)
        coeffs = [float(poly.coeff_monomial(variable**i)) for i in range(degree, -1, -1)]
        
        return {
            "type": "polynomial",
            "degree": degree,
            "coeffs": " ".join(map(str, coeffs)),
            "latex": latex_str,
            "success": True,
            "variable": str(variable)
        }
    except Exception as e:
        logger.error(f"Error extracting polynomial coefficients: {e}")
        return {
            "type": "polynomial",
            "degree": 2,
            "coeffs": "1 0 0",
            "latex": latex_str,
            "success": False,
            "error": str(e),
            "variable": "x"
        }

def extract_linear_system_coefficients(latex_str):
    """Extract linear system coefficients from LaTeX string"""
    try:
        cleaned = clean_latex_expression(latex_str)
        equations = re.split(r'\\\\|\n|;', latex_str)
        if len(equations) < 2:
            equations = re.split(r'(?<=[0-9])\s*(?=[+-]?\s*[0-9]*[xy])', cleaned)
        
        if len(equations) < 2 or 'y' not in cleaned or 'x' not in cleaned:
            raise ValueError("Could not find two equations or two variables (x, y) in system")

        eq1_str = equations[0].strip()
        eq2_str = equations[1].strip()
        
        def parse_linear_eq(eq_str):
            if '-' not in eq_str:
                raise ValueError("No equals sign (converted to '-') found")
            left, right = eq_str.split('-')
            expr = sp.sympify(left) - sp.sympify(right or '0')
            a = float(expr.coeff(x, 1)) if expr.coeff(x, 1) else 0
            b = float(expr.coeff(y, 1)) if expr.coeff(y, 1) else 0
            c = float(-expr.as_coefficients_dict()[1]) if 1 in expr.as_coefficients_dict() else 0
            return f"{a} {b} {c}"
        
        eq1_coeffs = parse_linear_eq(eq1_str)
        eq2_coeffs = parse_linear_eq(eq2_str)
        
        return {
            "type": "linear",
            "eq1_coeffs": eq1_coeffs,
            "eq2_coeffs": eq2_coeffs,
            "latex": latex_str,
            "success": True
        }
    except Exception as e:
        logger.error(f"Error extracting linear system coefficients: {e}")
        return {
            "type": "linear",
            "eq1_coeffs": "1 1 3",
            "eq2_coeffs": "1 -1 1",
            "latex": latex_str,
            "success": False,
            "error": str(e)
        }

def extract_equation_from_image(image_file):
    """Extract equation from image using Pix2Text"""
    try:
        if p2t_model is None:
            return {
                "type": "error",
                "latex": "Pix2Text model not loaded. Please check installation.",
                "success": False
            }
        
        if image_file is None:
            return {
                "type": "error",
                "latex": "No image file provided.",
                "success": False
            }
        
        if isinstance(image_file, str):
            image = Image.open(image_file)
        else:
            image = Image.open(image_file.name)
        
        if image.mode != 'RGB':
            image = image.convert('RGB')
        
        logger.info(f"Processing image of size: {image.size}")
        
        result = p2t_model.recognize_text_formula(image)
        if not result or result.strip() == "":
            return {
                "type": "error",
                "latex": "No text or formulas detected in the image.",
                "success": False
            }
        
        logger.info(f"Extracted text: {result}")
        
        eq_type = parse_equation_type(result)
        if eq_type == 'polynomial':
            return extract_polynomial_coefficients(result)
        elif eq_type == 'linear_system':
            return extract_linear_system_coefficients(result)
        else:
            return {
                "type": "error",
                "latex": f"Unsupported equation type detected: {eq_type}",
                "success": False
            }
    except Exception as e:
        logger.error(f"Error processing image: {e}")
        return {
            "type": "error",
            "latex": f"Error processing image: {str(e)}",
            "success": False
        }

def solve_polynomial(degree, coeff_string, real_only):
    """Solve polynomial equation"""
    try:
        coeffs = list(map(float, coeff_string.strip().split()))
        if len(coeffs) != degree + 1:
            return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None

        poly = sum([coeffs[i] * x**(degree - i) for i in range(degree + 1)])
        simplified = sp.simplify(poly)
        factored = sp.factor(simplified)
        roots = sp.solve(sp.Eq(simplified, 0), x)

        if real_only:
            roots = [r for r in roots if sp.im(r) == 0]

        roots_output = "$$\n" + "\\ ".join(
            [f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)]
        ) + "\n$$"

        steps_output = f"""
### Polynomial Expression
$$ {sp.latex(poly)} = 0 $$
### Simplified
$$ {sp.latex(simplified)} = 0 $$
### Factored
$$ {sp.latex(factored)} = 0 $$
### Roots {'(Only Real)' if real_only else '(All Roots)'}
{roots_output}
        """

        x_vals = np.linspace(-10, 10, 400)
        y_vals = np.polyval(coeffs, x_vals)

        fig, ax = plt.subplots(figsize=(6, 4))
        ax.plot(x_vals, y_vals, label="Polynomial", color="blue")
        ax.axhline(0, color='black', linewidth=0.5)
        ax.axvline(0, color='black', linewidth=0.5)
        ax.grid(True)
        ax.set_title("Graph of the Polynomial")
        ax.set_xlabel("x")
        ax.set_ylabel("f(x)")
        ax.legend()

        return steps_output, fig, ""
    except Exception as e:
        return f"❌ Error: {e}", None, ""

def solve_linear_system_from_coeffs(eq1_str, eq2_str):
    """Solve linear system"""
    try:
        coeffs1 = list(map(float, eq1_str.strip().split()))
        coeffs2 = list(map(float, eq2_str.strip().split()))

        if len(coeffs1) != 3 or len(coeffs2) != 3:
            return "⚠️ Please enter exactly 3 coefficients for each equation.", None, None, None

        a1, b1, c1 = coeffs1
        a2, b2, c2 = coeffs2

        eq1 = sp.Eq(a1 * x + b1 * y, c1)
        eq2 = sp.Eq(a2 * x + b2 * y, c2)

        sol = sp.solve([eq1, eq2], (x, y), dict=True)
        if not sol:
            return "❌ No unique solution.", None, None, None

        solution = sol[0]
        eq_latex = f"$$ {sp.latex(eq1)} \\ {sp.latex(eq2)} $$"

        steps = rf"""
### Step-by-step Solution
1. **Original Equations:**
   $$ {sp.latex(eq1)} $$
   $$ {sp.latex(eq2)} $$
2. **Standard Form:** Already provided.
3. **Solve using SymPy `solve`:** Internally applies substitution/elimination.
4. **Solve for `x` and `y`:**
   $$ x = {sp.latex(solution[x])}, \quad y = {sp.latex(solution[y])} $$
5. **Verification:** Substitute back into both equations."""

        x_vals = np.linspace(-10, 10, 400)
        f1 = sp.solve(eq1, y)
        f2 = sp.solve(eq2, y)

        fig, ax = plt.subplots()
        if f1:
            f1_func = sp.lambdify(x, f1[0], modules='numpy')
            ax.plot(x_vals, f1_func(x_vals), label=sp.latex(eq1))
        if f2:
            f2_func = sp.lambdify(x, f2[0], modules='numpy')
            ax.plot(x_vals, f2_func(x_vals), label=sp.latex(eq2))

        ax.plot(solution[x], solution[y], 'ro', label=f"Solution ({solution[x]}, {solution[y]})")
        ax.axhline(0, color='black', linewidth=0.5)
        ax.axvline(0, color='black', linewidth=0.5)
        ax.legend()
        ax.set_title("Graph of the Linear System")
        ax.grid(True)

        return eq_latex, steps, fig, ""
    except Exception as e:
        return f"❌ Error: {e}", None, None, None

def solve_extracted_equation(eq_data, real_only):
    """Route to appropriate solver based on equation type"""
    if eq_data["type"] == "polynomial":
        return solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only)
    elif eq_data["type"] == "linear":
        return "❌ Single linear equation not supported. Please upload a system of equations.", None, ""
    elif eq_data["type"] == "linear_system":
        return solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
    else:
        return "❌ Unknown equation type", None, ""

def image_tab():
    """Create the Image Upload Solver tab"""
    with gr.Tab("Image Upload Solver"):
        gr.Markdown("## Solve Equations from Image")
        
        with gr.Row():
            image_input = gr.File(
                label="Upload Question Image",
                file_types=[".pdf", ".png", ".jpg", ".jpeg"],
                file_count="single"
            )
            image_upload_btn = gr.Button("Process Image")
        
        gr.Markdown("**Supported Formats:** .pdf, .png, .jpg, .jpeg")

        with gr.Row():
            real_image_checkbox = gr.Checkbox(label="Show Only Real Roots (for Polynomials)", value=False)
            preview_image_btn = gr.Button("Preview Equation")

        image_equation_display = gr.Markdown()
        
        with gr.Row():
            confirm_image_btn = gr.Button("Display Solution", visible=False)
            edit_image_btn = gr.Button("Make Changes Manually", visible=False)

        edit_latex_input = gr.Textbox(label="Edit LaTeX Equation", visible=False, lines=3)
        save_edit_btn = gr.Button("Save Changes", visible=False)

        image_steps_md = gr.Markdown()
        image_plot_output = gr.Plot()
        extracted_eq_state = gr.State()

        def handle_image_upload(image_file):
            """Handle image upload and initial processing"""
            if image_file is None:
                return "", None, "", None, None
            
            try:
                eq_data = extract_equation_from_image(image_file)
                if eq_data["success"]:
                    return "", eq_data, "", None, None
                else:
                    return "", eq_data, "", None, None
            except Exception as e:
                return "", None, "", None, None

        image_upload_btn.click(
            fn=handle_image_upload,
            inputs=[image_input],
            outputs=[image_equation_display, extracted_eq_state, image_steps_md, 
                    image_plot_output, edit_latex_input]
        )

        def preview_image_equation(eq_data, real_only):
            """Preview the extracted equation"""
            if eq_data is None:
                return ("⚠️ No equation data available. Please upload and process an image first.", 
                       gr.update(visible=False), gr.update(visible=False), "", None)
            
            if eq_data["type"] == "error":
                return (eq_data["latex"], gr.update(visible=False), gr.update(visible=False), "", None)
            
            if eq_data["type"] == "polynomial":
                eq_type_display = "Polynomial Equation"
            elif eq_data["type"] == "linear_system":
                eq_type_display = "Linear System"
            else:
                eq_type_display = "Unknown Equation Type"

            preview_text = f"""
### ✅ Confirm {eq_type_display}
**Extracted LaTeX:** {eq_data['latex']}
            """
            
            return (preview_text, gr.update(visible=True), gr.update(visible=True), "", None)

        preview_image_btn.click(
            fn=preview_image_equation,
            inputs=[extracted_eq_state, real_image_checkbox],
            outputs=[image_equation_display, confirm_image_btn, edit_image_btn, 
                    image_steps_md, image_plot_output]
        )

        def confirm_image_solution(eq_data, real_only):
            """Confirm and solve the extracted equation"""
            if eq_data is None or eq_data["type"] == "error":
                return "⚠️ No valid equation to solve.", None, ""
            
            try:
                steps, plot, error = solve_extracted_equation(eq_data, real_only)
                return steps, plot, ""
            except Exception as e:
                return f"❌ Error solving equation: {str(e)}", None, ""

        confirm_image_btn.click(
            fn=confirm_image_solution,
            inputs=[extracted_eq_state, real_image_checkbox],
            outputs=[image_steps_md, image_plot_output, image_equation_display]
        )

        def enable_manual_edit(eq_data):
            """Enable manual editing of the equation"""
            if eq_data is None:
                latex_value = "No equation to edit. Please upload an image first."
            elif eq_data["type"] == "error":
                latex_value = "Error in extraction. Please enter your equation manually."
            else:
                latex_value = eq_data.get("latex", "")
            
            return (gr.update(visible=True, value=latex_value), 
                   gr.update(visible=True), 
                   gr.update(visible=False), 
                   gr.update(visible=False))

        edit_image_btn.click(
            fn=enable_manual_edit,
            inputs=[extracted_eq_state],
            outputs=[edit_latex_input, save_edit_btn, confirm_image_btn, edit_image_btn]
        )

        def save_manual_changes(latex_input, real_only):
            """Save manual changes and solve"""
            try:
                if not latex_input or latex_input.strip() == "":
                    return "⚠️ Please enter a valid equation.", None, ""
                
                eq_type = parse_equation_type(latex_input)
                if eq_type == 'polynomial':
                    eq_data = extract_polynomial_coefficients(latex_input)
                    steps, plot, error = solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only)
                elif eq_type == 'linear_system':
                    eq_data = extract_linear_system_coefficients(latex_input)
                    eq_latex, steps, plot, error = solve_linear_system_from_coeffs(
                        eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
                else:
                    return "❌ Unsupported equation type", None, ""
                
                return steps, plot, ""
            except Exception as e:
                return f"❌ Error parsing manual input: {str(e)}", None, ""

        save_edit_btn.click(
            fn=save_manual_changes,
            inputs=[edit_latex_input, real_image_checkbox],
            outputs=[image_steps_md, image_plot_output, image_equation_display]
        )

    return (image_input, image_upload_btn, real_image_checkbox, preview_image_btn,
            image_equation_display, confirm_image_btn, edit_image_btn, edit_latex_input,
            save_edit_btn, image_steps_md, image_plot_output, extracted_eq_state)