File size: 18,464 Bytes
ed6e039
 
 
 
 
 
 
 
 
9f23e99
ed6e039
280fb96
ed6e039
 
 
280fb96
ed6e039
 
263897e
 
 
 
 
 
 
 
 
280fb96
ed6e039
 
 
 
 
 
 
280fb96
 
 
 
263897e
280fb96
 
 
 
 
 
 
 
263897e
280fb96
 
 
263897e
 
 
 
 
 
 
 
 
 
 
 
 
280fb96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263897e
280fb96
263897e
280fb96
 
 
263897e
280fb96
 
 
 
 
 
 
 
 
 
263897e
280fb96
 
 
 
263897e
280fb96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a35ebae
280fb96
a35ebae
280fb96
 
 
 
a35ebae
 
280fb96
 
a35ebae
280fb96
 
 
 
a35ebae
280fb96
 
 
 
a35ebae
280fb96
 
 
 
 
 
 
 
 
 
 
a35ebae
280fb96
 
 
 
 
 
 
 
 
a35ebae
 
280fb96
 
 
 
 
 
263897e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280fb96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
263897e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
280fb96
 
263897e
280fb96
 
 
9e98a85
280fb96
 
 
ed6e039
 
 
 
263897e
ed6e039
 
 
 
 
 
 
263897e
ed6e039
 
 
 
 
 
 
263897e
ed6e039
 
 
 
 
 
 
 
 
 
 
280fb96
9f23e99
 
 
ed6e039
 
 
 
 
9f23e99
 
ed6e039
 
 
 
 
263897e
9f23e99
ed6e039
 
 
9f23e99
 
ed6e039
9f23e99
ed6e039
 
9f23e99
ed6e039
 
9f23e99
ed6e039
 
 
113b746
263897e
9f23e99
ed6e039
 
 
9f23e99
ed6e039
 
280fb96
ab8fb66
ed6e039
 
 
 
 
113b746
 
ed6e039
 
 
9f23e99
280fb96
263897e
 
 
280fb96
 
ed6e039
 
 
 
 
 
 
 
 
9f23e99
ed6e039
 
 
 
263897e
ed6e039
 
280fb96
ed6e039
 
ab8fb66
ed6e039
280fb96
ed6e039
 
 
 
280fb96
9f23e99
 
 
 
 
 
ed6e039
 
9f23e99
 
 
 
263897e
9f23e99
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
import gradio as gr
import sympy as sp
from pix2text import Pix2Text
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
import re
import io
import logging
from llm_utils import explain_with_llm  # βœ… Added for LLM explanation

# Configure logging for debugging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Define symbolic variables
x, y = sp.symbols('x y')

# βœ… Helper to get safe variable symbol
def get_variable_symbol(varname):
    if varname in {"pi", "e", "I", "i"}:
        return x
    try:
        return sp.Symbol(varname)
    except Exception:
        return x

# Initialize Pix2Text model globally
try:
    p2t_model = Pix2Text.from_config()
    logger.info("Pix2Text model loaded successfully")
except Exception as e:
    logger.error(f"Failed to load Pix2Text model: {e}")
    p2t_model = None

def clean_latex_expression(latex_str):
    """Clean and normalize LaTeX expression for SymPy parsing"""
    if not latex_str:
        return ""

    latex_str = latex_str.strip()
    latex_str = re.sub(r'^\$\$|\$\$$', '', latex_str)  # Remove $$ delimiters
    latex_str = re.sub(r'\\[a-zA-Z]+\{([^}]*)\}', r'\1', latex_str)  # Remove LaTeX commands
    latex_str = re.sub(r'\\{2,}', r'\\', latex_str)  # Fix multiple backslashes
    latex_str = re.sub(r'\s+', ' ', latex_str)  # Normalize whitespace
    latex_str = re.sub(r'\^{([^}]+)}', r'**\1', latex_str)  # Convert x^{n} to x**n
    latex_str = re.sub(r'(\d*\.?\d+)\s*([xy])', r'\1*\2', latex_str)  # Add multiplication: 1.0x -> 1.0*x
    latex_str = re.sub(r'\s*([+\-*/=])\s*', r'\1', latex_str)  # Remove spaces around operators

    if '=' in latex_str:
        left, right = latex_str.split('=')
        latex_str = f"{left} - ({right})"  # Move right-hand side to left

    # βœ… Insert missing multiplication
    latex_str = re.sub(r'(\))([a-zA-Z])', r'\1*\2', latex_str)
    latex_str = re.sub(r'(\d|\w)\(', r'\1*(', latex_str)

    # βœ… Replace LaTeX constants with sympy
    latex_str = latex_str.replace(r'\pi', 'pi')
    latex_str = latex_str.replace(r'\mathrm{e}', 'e')
    latex_str = latex_str.replace(r'\cdot', '*')
    latex_str = latex_str.replace(r'\times', '*')
    latex_str = latex_str.replace(r'\\', '')
    latex_str = re.sub(r'\\sqrt\{([^}]+)\}', r'sqrt(\1)', latex_str)

    return latex_str.strip()

def parse_equation_type(latex_str):
    """Determine if the equation is polynomial (single-variable) or linear system (two-variable)"""
    try:
        cleaned = clean_latex_expression(latex_str)
        if not cleaned:
            return 'polynomial'

        # Check for two-variable system
        if 'y' in cleaned and 'x' in cleaned:
            if '\\\\' in latex_str or '\n' in latex_str or len(re.split(r'\\\\|\n|;', latex_str)) >= 2:
                return 'linear_system'
            return 'linear'  # Single equation with x and y

        # Check for single-variable polynomial
        try:
            expr = sp.sympify(cleaned.split('-')[0] if '-' in cleaned else cleaned)
            if x in expr.free_symbols and y not in expr.free_symbols:
                degree = sp.degree(expr, x)
                return 'polynomial' if degree > 0 else 'linear'
            elif x not in expr.free_symbols and y in expr.free_symbols:
                return 'polynomial'
            else:
                return 'polynomial'
        except:
            if 'x**' in cleaned or '^' in latex_str:
                return 'polynomial'
            return 'polynomial'
    except Exception as e:
        logger.error(f"Error determining equation type: {e}")
        return 'polynomial'

def extract_polynomial_coefficients(latex_str):
    try:
        cleaned = clean_latex_expression(latex_str)
        expr = sp.sympify(cleaned, evaluate=False)
        if x not in expr.free_symbols and y not in expr.free_symbols:
            raise ValueError("No variable (x or y) found in expression")
        variable = next(iter(expr.free_symbols))
        degree = sp.degree(expr, variable)
        if degree < 1 or degree > 8:
            raise ValueError(f"Polynomial degree {degree} is out of supported range (1-8)")
        poly = sp.Poly(expr, variable)
        coeffs = [poly.coeff_monomial(variable**i).evalf() for i in range(degree, -1, -1)]
        return {
            "type": "polynomial",
            "degree": degree,
            "coeffs": " ".join(map(str, coeffs)),
            "latex": latex_str,
            "success": True,
            "variable": str(variable)
        }
    except Exception as e:
        logger.error(f"Error extracting polynomial coefficients: {e}")
        return {
            "type": "polynomial",
            "degree": 2,
            "coeffs": "1 0 0",
            "latex": latex_str,
            "success": False,
            "error": str(e),
            "variable": "x"
        }

def solve_polynomial(degree, coeff_string, real_only, variable_name="x"):
    try:
        variable = sp.Symbol(variable_name)
        coeffs = list(map(float, coeff_string.strip().split()))
        if len(coeffs) != degree + 1:
            return f"⚠️ Please enter exactly {degree + 1} coefficients.", None, None

        # Build the polynomial expression
        poly = sum([coeffs[i] * variable**(degree - i) for i in range(degree + 1)])
        simplified = sp.simplify(poly)
        factored = sp.factor(simplified)
        roots = sp.solve(sp.Eq(simplified, 0), variable)

        if real_only:
            roots = [r for r in roots if sp.im(r) == 0]

        # Format roots in LaTeX
        roots_output = "$$\n" + "\\ ".join(
            [f"r_{{{i}}} = {sp.latex(sp.nsimplify(r, rational=True))}" for i, r in enumerate(roots, 1)]
        ) + "\n$$"

        # Format steps in LaTeX
        steps_output = f"""
### Polynomial Expression
$$ {sp.latex(poly)} = 0 $$
### Simplified
$$ {sp.latex(simplified)} = 0 $$
### Factored
$$ {sp.latex(factored)} = 0 $$
### Roots {'(Only Real)' if real_only else '(All Roots)'}
{roots_output}
        """

        # Generate plot using numeric x-axis
        x_vals = np.linspace(-10, 10, 400)
        y_vals = np.polyval(coeffs, x_vals)

        fig, ax = plt.subplots(figsize=(6, 4))
        ax.plot(x_vals, y_vals, label="Polynomial", color="blue")
        ax.axhline(0, color='black', linewidth=0.5)
        ax.axvline(0, color='black', linewidth=0.5)
        ax.grid(True)
        ax.set_title("Graph of the Polynomial")
        ax.set_xlabel(str(variable))
        ax.set_ylabel("f(" + str(variable) + ")")
        ax.legend()

        return steps_output, fig, ""
    except Exception as e:
        return f"❌ Error: {e}", None, ""

def extract_linear_system_coefficients(latex_str):
    try:
        cleaned = clean_latex_expression(latex_str)
        equations = re.split(r'\\\\|\n|;', latex_str)
        if len(equations) < 2:
            equations = re.split(r'(?<=[0-9])\s*(?=[+-]?\s*[0-9]*[xy])', cleaned)
        if len(equations) < 2 or 'y' not in cleaned or 'x' not in cleaned:
            raise ValueError("Could not find two equations or two variables (x, y) in system")

        eq1_str = equations[0].strip()
        eq2_str = equations[1].strip()

        def parse_linear_eq(eq_str):
            if '-' not in eq_str:
                raise ValueError("No equals sign (converted to '-') found")
            left, right = eq_str.split('-')
            expr = sp.sympify(left) - sp.sympify(right or '0')
            a = float(expr.coeff(x, 1)) if expr.coeff(x, 1) else 0
            b = float(expr.coeff(y, 1)) if expr.coeff(y, 1) else 0
            c = float(-expr.as_coefficients_dict()[1]) if 1 in expr.as_coefficients_dict() else 0
            return f"{a} {b} {c}"

        eq1_coeffs = parse_linear_eq(eq1_str)
        eq2_coeffs = parse_linear_eq(eq2_str)
        return {
            "type": "linear",
            "eq1_coeffs": eq1_coeffs,
            "eq2_coeffs": eq2_coeffs,
            "latex": latex_str,
            "success": True
        }
    except Exception as e:
        logger.error(f"Error extracting linear system coefficients: {e}")
        return {
            "type": "linear",
            "eq1_coeffs": "1 1 3",
            "eq2_coeffs": "1 -1 1",
            "latex": latex_str,
            "success": False,
            "error": str(e)
        }

def solve_linear_system_from_coeffs(eq1_str, eq2_str):
    try:
        coeffs1 = list(map(float, eq1_str.strip().split()))
        coeffs2 = list(map(float, eq2_str.strip().split()))

        if len(coeffs1) != 3 or len(coeffs2) != 3:
            return "⚠️ Please enter exactly 3 coefficients for each equation.", None, None, None

        a1, b1, c1 = coeffs1
        a2, b2, c2 = coeffs2

        eq1 = sp.Eq(a1 * x + b1 * y, c1)
        eq2 = sp.Eq(a2 * x + b2 * y, c2)

        sol = sp.solve([eq1, eq2], (x, y), dict=True)
        if not sol:
            return "❌ No unique solution.", None, None, None

        solution = sol[0]
        eq_latex = f"$$ {sp.latex(eq1)} \\ {sp.latex(eq2)} $$"

        steps = rf"""
### Step-by-step Solution
1. **Original Equations:**
   $$ {sp.latex(eq1)} $$
   $$ {sp.latex(eq2)} $$
2. **Standard Form:** Already provided.
3. **Solve using SymPy `solve`:** Internally applies substitution/elimination.
4. **Solve for `x` and `y`:**
   $$ x = {sp.latex(solution[x])}, \quad y = {sp.latex(solution[y])} $$
5. **Verification:** Substitute back into both equations."""

        x_vals = np.linspace(-10, 10, 400)
        f1 = sp.solve(eq1, y)
        f2 = sp.solve(eq2, y)

        fig, ax = plt.subplots()
        if f1:
            f1_func = sp.lambdify(x, f1[0], modules='numpy')
            ax.plot(x_vals, f1_func(x_vals), label=sp.latex(eq1))
        if f2:
            f2_func = sp.lambdify(x, f2[0], modules='numpy')
            ax.plot(x_vals, f2_func(x_vals), label=sp.latex(eq2))

        ax.plot(solution[x], solution[y], 'ro', label=f"Solution ({solution[x]}, {solution[y]})")
        ax.axhline(0, color='black', linewidth=0.5)
        ax.axvline(0, color='black', linewidth=0.5)
        ax.legend()
        ax.set_title("Graph of the Linear System")
        ax.grid(True)

        return eq_latex, steps, fig, ""
    except Exception as e:
        return f"❌ Error: {e}", None, None, None

def extract_equation_from_image(image_file):
    try:
        if p2t_model is None:
            return {
                "type": "error",
                "latex": "Pix2Text model not loaded. Please check installation.",
                "success": False
            }
        if image_file is None:
            return {
                "type": "error",
                "latex": "No image file provided.",
                "success": False
            }

        if isinstance(image_file, str):
            image = Image.open(image_file)
        else:
            image = Image.open(image_file.name)

        if image.mode != 'RGB':
            image = image.convert('RGB')

        logger.info(f"Processing image of size: {image.size}")
        result = p2t_model.recognize_text_formula(image)

        if not result or result.strip() == "":
            return {
                "type": "error",
                "latex": "No text or formulas detected in the image.",
                "success": False
            }

        logger.info(f"Extracted text: {result}")
        eq_type = parse_equation_type(result)

        if eq_type == 'polynomial':
            return extract_polynomial_coefficients(result)
        elif eq_type == 'linear_system':
            return extract_linear_system_coefficients(result)
        else:
            return {
                "type": "error",
                "latex": f"Unsupported equation type detected: {eq_type}",
                "success": False
            }

    except Exception as e:
        logger.error(f"Error processing image: {e}")
        return {
            "type": "error",
            "latex": f"Error processing image: {str(e)}",
            "success": False
        }

def solve_extracted_equation(eq_data, real_only):
    if eq_data["type"] == "polynomial":
        return solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only, eq_data.get("variable", "x"))
    elif eq_data["type"] == "linear":
        return "❌ Single linear equation not supported. Please upload a system of equations.", None, ""
    elif eq_data["type"] == "linear_system":
        return solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
    else:
        return "❌ Unknown equation type", None, ""

def image_tab():
    """Create the Image Upload Solver tab"""
    with gr.Tab("Image Upload Solver"):
        gr.Markdown("## Solve Equations from Image")

        with gr.Row():
            image_input = gr.File(
                label="Upload Question Image",
                file_types=[".pdf", ".png", ".jpg", ".jpeg"],
                file_count="single"
            )
            image_upload_btn = gr.Button("Process Image")

        gr.Markdown("**Supported Formats:** .pdf, .png, .jpg, .jpeg")

        with gr.Row():
            real_image_checkbox = gr.Checkbox(label="Show Only Real Roots (for Polynomials)", value=False)
            preview_image_btn = gr.Button("Preview Equation")

        image_equation_display = gr.Markdown()

        with gr.Row():
            confirm_image_btn = gr.Button("Display Solution", visible=False)
            edit_image_btn = gr.Button("Make Changes Manually", visible=False)

        edit_latex_input = gr.Textbox(label="Edit LaTeX Equation", visible=False, lines=3)
        save_edit_btn = gr.Button("Save Changes", visible=False)

        image_steps_md = gr.Markdown()
        image_plot_output = gr.Plot()
        extracted_eq_state = gr.State()

        llm_url_input = gr.Textbox(label="LLM Microservice URL (optional)", placeholder="https://your-llm.ngrok.app")
        explain_image_btn = gr.Button("Explain with LLM")
        image_solution_txt = gr.Textbox(visible=False)

        def handle_image_upload(image_file):
            if image_file is None:
                return "", None, "", None, None
            try:
                eq_data = extract_equation_from_image(image_file)
                return "", eq_data, "", None, None
            except Exception:
                return "", None, "", None, None

        image_upload_btn.click(
            fn=handle_image_upload,
            inputs=[image_input],
            outputs=[image_equation_display, extracted_eq_state, image_steps_md,
                     image_plot_output, edit_latex_input]
        )

        def preview_image_equation(eq_data, real_only):
            if not eq_data:
                return "⚠️ No equation data available.", gr.update(visible=False), gr.update(visible=False), "", None
            if eq_data["type"] == "error":
                return eq_data["latex"], gr.update(visible=False), gr.update(visible=False), "", None

            preview_text = f"""
### βœ… Confirm {'Polynomial' if eq_data['type'] == 'polynomial' else 'Linear System'}
**Extracted LaTeX:** {eq_data['latex']}
            """
            return preview_text, gr.update(visible=True), gr.update(visible=True), "", None

        preview_image_btn.click(
            fn=preview_image_equation,
            inputs=[extracted_eq_state, real_image_checkbox],
            outputs=[image_equation_display, confirm_image_btn, edit_image_btn,
                     image_steps_md, image_plot_output]
        )

        def confirm_image_solution(eq_data, real_only):
            if not eq_data or eq_data["type"] == "error":
                return "⚠️ No valid equation to solve.", None, ""
            try:
                steps, plot, _ = solve_extracted_equation(eq_data, real_only)
                return steps, plot, gr.update(value=steps)
            except Exception as e:
                return f"❌ Error solving equation: {str(e)}", None, ""

        confirm_image_btn.click(
            fn=confirm_image_solution,
            inputs=[extracted_eq_state, real_image_checkbox],
            outputs=[image_steps_md, image_plot_output, image_solution_txt]
        )

        def enable_manual_edit(eq_data):
            latex_value = eq_data.get("latex", "") if eq_data and eq_data["type"] != "error" else "Error in extraction."
            return (
                gr.update(visible=True, value=latex_value),
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False)
            )

        edit_image_btn.click(
            fn=enable_manual_edit,
            inputs=[extracted_eq_state],
            outputs=[edit_latex_input, save_edit_btn, confirm_image_btn, edit_image_btn]
        )

        def save_manual_changes(latex_input, real_only):
            try:
                if not latex_input.strip():
                    return "⚠️ Please enter a valid equation.", None, ""
                eq_type = parse_equation_type(latex_input)
                if eq_type == 'polynomial':
                    eq_data = extract_polynomial_coefficients(latex_input)
                    steps, plot, _ = solve_polynomial(eq_data["degree"], eq_data["coeffs"], real_only, eq_data.get("variable", "x"))
                elif eq_type == 'linear_system':
                    eq_data = extract_linear_system_coefficients(latex_input)
                    _, steps, plot, _ = solve_linear_system_from_coeffs(eq_data["eq1_coeffs"], eq_data["eq2_coeffs"])
                else:
                    return "❌ Unsupported equation type", None, ""
                return steps, plot, gr.update(value=steps)
            except Exception as e:
                return f"❌ Error parsing manual input: {str(e)}", None, ""

        save_edit_btn.click(
            fn=save_manual_changes,
            inputs=[edit_latex_input, real_image_checkbox],
            outputs=[image_steps_md, image_plot_output, image_solution_txt]
        )

        explain_image_btn.click(
            fn=lambda sol, url: explain_with_llm(sol, "image", url),
            inputs=[image_solution_txt, llm_url_input],
            outputs=[image_steps_md]
        )

    return (
        image_input, image_upload_btn, real_image_checkbox, preview_image_btn,
        image_equation_display, confirm_image_btn, edit_image_btn, edit_latex_input,
        save_edit_btn, image_steps_md, image_plot_output, extracted_eq_state,
        llm_url_input, explain_image_btn, image_solution_txt
    )