Spaces:
Sleeping
Sleeping
File size: 6,958 Bytes
8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d 088b5a9 8cbd11d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
import gradio as gr
from PIL import Image
from pix2tex.cli import LatexOCR
import sympy as sp
from sympy.parsing.latex import parse_latex
import re
model = LatexOCR()
def preprocess_handwritten_image(pil_img):
return pil_img.convert('RGB')
# --- Tab 1 cleaner (UNCHANGED) ---
def clean_latex(latex):
latex = latex.replace('\\ ', '')
latex = latex.replace('\\\\', '\\')
latex = re.sub(r'\\[ \t\n\r\f\v]*', '', latex)
latex = re.sub(r'\\([+\-=])', r'\1', latex)
replacements = {
r'\\chi': 'x', r'chi': 'x',
r'\\xi': 'x', r'xi': 'x',
r'\\alpha': 'x', r'alpha': 'x',
r'\\beta': 'b', r'beta': 'b',
r'\\gamma': 'y', r'gamma': 'y',
r'\\vartheta': '3', r'vartheta': '3',
r'\\mathcalW': 'x', r'mathcalW': 'x',
r'\\pi': 'pi', r'pi': 'pi',
r'\\mathrm': '', r'mathrm': '',
}
for wrong, correct in replacements.items():
latex = re.sub(wrong, correct, latex)
latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Xx]\s*\}?', 'x', latex)
latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Yy]\s*\}?', 'y', latex)
latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Zz]\s*\}?', 'z', latex)
latex = latex.replace('cal x', 'x').replace('cal X', 'x')
latex = latex.replace('mathcal x', 'x').replace('mathcal X', 'x')
latex = latex.replace('{', '').replace('}', '')
latex = latex.strip().rstrip(',.')
latex = re.sub(r'(?<![a-zA-Z0-9])e(?![a-zA-Z0-9])', 'E', latex)
latex = re.sub(r'(\d)([a-zA-Z])', r'\1*\2', latex)
latex = re.sub(r'(\d+)\s*i', r'\1*I', latex)
latex = re.sub(r'(?<![a-zA-Z0-9])i(?![a-zA-Z0-9])', 'I', latex)
latex = re.sub(r'\(([^()]+?)\)\s*([a-zA-Z](\^\d+)?)', r'(\1)*\2', latex)
latex = latex.replace(r'\cdot', '*')
latex = latex.replace('β', '-')
latex = re.sub(r'[^\w\s^=+*\-().]', '', latex)
if '=' not in latex:
latex += '=0'
latex = latex.replace('pi', '3.1416')
latex = latex.replace('e', '2.7183')
latex = latex.replace('E', '2.7183')
return latex
# --- Tab 2 cleaner ---
def clean_latex2(latex):
latex = latex.replace('\\ ', '')
latex = latex.replace('\\\\', '\\')
latex = re.sub(r'\\[ \t\n\r\f\v]*', '', latex)
latex = latex.replace(r'\times', 'x')
latex = latex.replace(r'\cdot', '*')
latex = latex.replace('β', '-').replace('β', '-')
latex = re.sub(r'\\(text|mathbf|mathrm|mathit|textbf|mathcal|cal)\s*\{([^{}]+)\}', r'\2', latex)
latex = re.sub(r'\\[a-zA-Z]+', '', latex)
latex = re.sub(r'\{+\}+', '', latex)
latex = re.sub(r'\{([^\{\}]*)\}', r'\1', latex)
latex = re.sub(r'[;,]', '\n', latex)
latex = re.sub(r'[^\w\s=+\-*/().]', '', latex)
latex = re.sub(r'\s+', ' ', latex)
latex = re.sub(r'(?<![=<>])=(?![=<>])', ' = ', latex)
replacements = {
'chi': 'x', 'xi': 'x', 'alpha': 'x', 'beta': 'b',
'gamma': 'y', 'vartheta': '3', 'mathcal': '',
'cal': '', 'mathrm': ''
}
for wrong, right in replacements.items():
latex = re.sub(wrong, right, latex)
return latex.strip()
# --- Polynomial Solver (unchanged) ---
def solve_polynomial(image):
try:
img = preprocess_handwritten_image(image)
latex_result = model(img)
if not latex_result or len(latex_result.strip()) < 2:
return "β Could not extract valid LaTeX from image.", "", ""
cleaned_latex = clean_latex(latex_result)
expr = parse_latex(cleaned_latex)
expr = expr.subs(sp.pi, sp.Float(3.1416)).subs(sp.E, sp.Float(2.7183))
if not isinstance(expr, sp.Equality):
raise ValueError("Expression is not an equation.")
lhs = expr.lhs - expr.rhs
if not lhs.is_polynomial():
raise ValueError("Not a polynomial")
output = f"## π Extracted LaTeX\n```latex\n{latex_result}\n```\n"
output += f"---\n## π§Ή Cleaned LaTeX\n```latex\n{cleaned_latex}\n```\n"
output += f"---\n## π§ Parsed Expression\n$$ {sp.latex(expr)} $$\n"
factor = sp.factor(lhs)
output += f"---\n## βοΈ Standard Form\n$$ {sp.latex(lhs)} = 0 $$\n"
output += f"---\n## π§© Factorized\n$$ {sp.latex(factor)} = 0 $$\n"
x = next(iter(lhs.free_symbols))
roots = sp.solve(lhs, x)
output += "## β
Roots\n"
output += "$$\n\\begin{aligned}\n"
for i, r in enumerate(roots, 1):
root_val = sp.N(r, 6)
output += f"\\text{{Root {i}}}:\\quad x &\\approx {sp.latex(root_val)} \\\\\n"
output += "\\end{aligned}\n$$\n"
return output, cleaned_latex, ""
except Exception as e:
return f"β Error: {str(e)}", "", ""
# --- NEW Multi-image System Solver ---
def solve_system_multi(img1, img2, img3):
images = [img1, img2, img3]
cleaned_equations = []
raw_outputs = []
for img in images:
if img is None:
continue
try:
img = preprocess_handwritten_image(img)
latex = model(img)
raw_outputs.append(latex)
cleaned = clean_latex2(latex)
parsed = parse_latex(cleaned)
if isinstance(parsed, sp.Equality):
cleaned_equations.append(parsed)
except:
continue
if len(cleaned_equations) < 2:
return f"β Could not parse enough valid equations."
symbols = set()
for eq in cleaned_equations:
symbols.update(eq.free_symbols)
sol = sp.solve(cleaned_equations, list(symbols), dict=True)
output = "## π Raw LaTeX:\n"
for latex in raw_outputs:
output += f"- ```latex\n{latex}\n```\n"
output += "---\n## βοΈ Parsed Equations:\n"
for eq in cleaned_equations:
output += f"$$ {sp.latex(eq)} $$\n"
output += "---\n## β
Solution:\n"
if sol:
output += "$$" + sp.latex(sol[0]) + "$$"
else:
output += "β No solution found or system may be inconsistent."
return output
# === UI ===
with gr.Blocks() as demo:
with gr.Tab("πΌοΈ Parse from Image"):
image_input = gr.Image(type="pil", label="π· Upload Image of Polynomial")
hidden_latex = gr.Textbox(visible=False)
explanation_prompt = gr.Textbox(visible=False)
output_box = gr.Markdown(label="π Step-by-step Solution")
submit_btn = gr.Button("π Solve")
submit_btn.click(fn=solve_polynomial, inputs=[image_input], outputs=[output_box, hidden_latex, explanation_prompt])
with gr.Tab("π Solve System (Multi-Image)"):
img1 = gr.Image(type="pil", label="π· Equation 1")
img2 = gr.Image(type="pil", label="π· Equation 2")
img3 = gr.Image(type="pil", label="π· Equation 3 (Optional)")
sys_output = gr.Markdown(label="π Solved System Output")
sys_btn = gr.Button("π Solve System")
sys_btn.click(fn=solve_system_multi, inputs=[img1, img2, img3], outputs=[sys_output])
if __name__ == "__main__":
demo.launch()
|