File size: 6,958 Bytes
8cbd11d
 
 
 
 
 
 
 
 
 
 
 
088b5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbd11d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
088b5a9
 
8cbd11d
088b5a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8cbd11d
088b5a9
 
 
 
 
 
 
 
 
8cbd11d
 
088b5a9
8cbd11d
088b5a9
 
 
 
 
8cbd11d
088b5a9
 
8cbd11d
088b5a9
 
 
8cbd11d
088b5a9
 
 
 
 
 
 
 
 
 
 
 
 
8cbd11d
088b5a9
8cbd11d
088b5a9
 
 
 
 
 
 
 
 
8cbd11d
 
088b5a9
 
 
 
8cbd11d
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from PIL import Image
from pix2tex.cli import LatexOCR
import sympy as sp
from sympy.parsing.latex import parse_latex
import re

model = LatexOCR()

def preprocess_handwritten_image(pil_img):
    return pil_img.convert('RGB')

# --- Tab 1 cleaner (UNCHANGED) ---
def clean_latex(latex):
    latex = latex.replace('\\ ', '')
    latex = latex.replace('\\\\', '\\')
    latex = re.sub(r'\\[ \t\n\r\f\v]*', '', latex)
    latex = re.sub(r'\\([+\-=])', r'\1', latex)
    replacements = {
        r'\\chi': 'x', r'chi': 'x',
        r'\\xi': 'x', r'xi': 'x',
        r'\\alpha': 'x', r'alpha': 'x',
        r'\\beta': 'b', r'beta': 'b',
        r'\\gamma': 'y', r'gamma': 'y',
        r'\\vartheta': '3', r'vartheta': '3',
        r'\\mathcalW': 'x', r'mathcalW': 'x',
        r'\\pi': 'pi', r'pi': 'pi',
        r'\\mathrm': '', r'mathrm': '',
    }
    for wrong, correct in replacements.items():
        latex = re.sub(wrong, correct, latex)
    latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Xx]\s*\}?', 'x', latex)
    latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Yy]\s*\}?', 'y', latex)
    latex = re.sub(r'\\(cal|mathcal)\s*\{?\s*[Zz]\s*\}?', 'z', latex)
    latex = latex.replace('cal x', 'x').replace('cal X', 'x')
    latex = latex.replace('mathcal x', 'x').replace('mathcal X', 'x')
    latex = latex.replace('{', '').replace('}', '')
    latex = latex.strip().rstrip(',.')
    latex = re.sub(r'(?<![a-zA-Z0-9])e(?![a-zA-Z0-9])', 'E', latex)
    latex = re.sub(r'(\d)([a-zA-Z])', r'\1*\2', latex)
    latex = re.sub(r'(\d+)\s*i', r'\1*I', latex)
    latex = re.sub(r'(?<![a-zA-Z0-9])i(?![a-zA-Z0-9])', 'I', latex)
    latex = re.sub(r'\(([^()]+?)\)\s*([a-zA-Z](\^\d+)?)', r'(\1)*\2', latex)
    latex = latex.replace(r'\cdot', '*')
    latex = latex.replace('βˆ’', '-')
    latex = re.sub(r'[^\w\s^=+*\-().]', '', latex)
    if '=' not in latex:
        latex += '=0'
    latex = latex.replace('pi', '3.1416')
    latex = latex.replace('e', '2.7183')
    latex = latex.replace('E', '2.7183')
    return latex

# --- Tab 2 cleaner ---
def clean_latex2(latex):
    latex = latex.replace('\\ ', '')
    latex = latex.replace('\\\\', '\\')
    latex = re.sub(r'\\[ \t\n\r\f\v]*', '', latex)
    latex = latex.replace(r'\times', 'x')
    latex = latex.replace(r'\cdot', '*')
    latex = latex.replace('βˆ’', '-').replace('–', '-')
    latex = re.sub(r'\\(text|mathbf|mathrm|mathit|textbf|mathcal|cal)\s*\{([^{}]+)\}', r'\2', latex)
    latex = re.sub(r'\\[a-zA-Z]+', '', latex)
    latex = re.sub(r'\{+\}+', '', latex)
    latex = re.sub(r'\{([^\{\}]*)\}', r'\1', latex)
    latex = re.sub(r'[;,]', '\n', latex)
    latex = re.sub(r'[^\w\s=+\-*/().]', '', latex)
    latex = re.sub(r'\s+', ' ', latex)
    latex = re.sub(r'(?<![=<>])=(?![=<>])', ' = ', latex)
    replacements = {
        'chi': 'x', 'xi': 'x', 'alpha': 'x', 'beta': 'b',
        'gamma': 'y', 'vartheta': '3', 'mathcal': '',
        'cal': '', 'mathrm': ''
    }
    for wrong, right in replacements.items():
        latex = re.sub(wrong, right, latex)
    return latex.strip()

# --- Polynomial Solver (unchanged) ---
def solve_polynomial(image):
    try:
        img = preprocess_handwritten_image(image)
        latex_result = model(img)
        if not latex_result or len(latex_result.strip()) < 2:
            return "❌ Could not extract valid LaTeX from image.", "", ""
        cleaned_latex = clean_latex(latex_result)
        expr = parse_latex(cleaned_latex)
        expr = expr.subs(sp.pi, sp.Float(3.1416)).subs(sp.E, sp.Float(2.7183))
        if not isinstance(expr, sp.Equality):
            raise ValueError("Expression is not an equation.")
        lhs = expr.lhs - expr.rhs
        if not lhs.is_polynomial():
            raise ValueError("Not a polynomial")
        output = f"## πŸ“„ Extracted LaTeX\n```latex\n{latex_result}\n```\n"
        output += f"---\n## 🧹 Cleaned LaTeX\n```latex\n{cleaned_latex}\n```\n"
        output += f"---\n## 🧠 Parsed Expression\n$$ {sp.latex(expr)} $$\n"
        factor = sp.factor(lhs)
        output += f"---\n## ✏️ Standard Form\n$$ {sp.latex(lhs)} = 0 $$\n"
        output += f"---\n## 🧩 Factorized\n$$ {sp.latex(factor)} = 0 $$\n"
        x = next(iter(lhs.free_symbols))
        roots = sp.solve(lhs, x)
        output += "## βœ… Roots\n"
        output += "$$\n\\begin{aligned}\n"
        for i, r in enumerate(roots, 1):
            root_val = sp.N(r, 6)
            output += f"\\text{{Root {i}}}:\\quad x &\\approx {sp.latex(root_val)} \\\\\n"
        output += "\\end{aligned}\n$$\n"
        return output, cleaned_latex, ""
    except Exception as e:
        return f"❌ Error: {str(e)}", "", ""

# --- NEW Multi-image System Solver ---
def solve_system_multi(img1, img2, img3):
    images = [img1, img2, img3]
    cleaned_equations = []
    raw_outputs = []
    for img in images:
        if img is None:
            continue
        try:
            img = preprocess_handwritten_image(img)
            latex = model(img)
            raw_outputs.append(latex)
            cleaned = clean_latex2(latex)
            parsed = parse_latex(cleaned)
            if isinstance(parsed, sp.Equality):
                cleaned_equations.append(parsed)
        except:
            continue

    if len(cleaned_equations) < 2:
        return f"❌ Could not parse enough valid equations."

    symbols = set()
    for eq in cleaned_equations:
        symbols.update(eq.free_symbols)

    sol = sp.solve(cleaned_equations, list(symbols), dict=True)
    output = "## πŸ“„ Raw LaTeX:\n"
    for latex in raw_outputs:
        output += f"- ```latex\n{latex}\n```\n"
    output += "---\n## ✏️ Parsed Equations:\n"
    for eq in cleaned_equations:
        output += f"$$ {sp.latex(eq)} $$\n"
    output += "---\n## βœ… Solution:\n"
    if sol:
        output += "$$" + sp.latex(sol[0]) + "$$"
    else:
        output += "❌ No solution found or system may be inconsistent."
    return output

# === UI ===
with gr.Blocks() as demo:
    with gr.Tab("πŸ–ΌοΈ Parse from Image"):
        image_input = gr.Image(type="pil", label="πŸ“· Upload Image of Polynomial")
        hidden_latex = gr.Textbox(visible=False)
        explanation_prompt = gr.Textbox(visible=False)
        output_box = gr.Markdown(label="πŸ“‹ Step-by-step Solution")
        submit_btn = gr.Button("πŸ” Solve")
        submit_btn.click(fn=solve_polynomial, inputs=[image_input], outputs=[output_box, hidden_latex, explanation_prompt])

    with gr.Tab("πŸ“ Solve System (Multi-Image)"):
        img1 = gr.Image(type="pil", label="πŸ“· Equation 1")
        img2 = gr.Image(type="pil", label="πŸ“· Equation 2")
        img3 = gr.Image(type="pil", label="πŸ“· Equation 3 (Optional)")
        sys_output = gr.Markdown(label="πŸ“‹ Solved System Output")
        sys_btn = gr.Button("πŸ“Œ Solve System")
        sys_btn.click(fn=solve_system_multi, inputs=[img1, img2, img3], outputs=[sys_output])

if __name__ == "__main__":
    demo.launch()