Spaces:
Running
Running
Update operators.md
Browse files- docs/operators.md +60 -36
docs/operators.md
CHANGED
|
@@ -2,46 +2,60 @@
|
|
| 2 |
|
| 3 |
## Pre-defined
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
**Binary**
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
**Unary**
|
| 15 |
|
| 16 |
-
`neg
|
| 17 |
-
`square
|
| 18 |
-
`cube
|
| 19 |
-
`exp
|
| 20 |
-
`abs
|
| 21 |
-
`log
|
| 22 |
-
`log10
|
| 23 |
-
`log2
|
| 24 |
-
`log1p
|
| 25 |
-
`sqrt
|
| 26 |
-
`sin
|
| 27 |
-
`cos
|
| 28 |
-
`tan
|
| 29 |
-
`sinh
|
| 30 |
-
`cosh
|
| 31 |
-
`tanh
|
| 32 |
-
`atan
|
| 33 |
-
`asinh
|
| 34 |
-
`acosh
|
| 35 |
-
`atanh_clip`
|
| 36 |
-
`
|
| 37 |
-
`
|
| 38 |
-
`
|
| 39 |
-
`
|
| 40 |
-
`
|
| 41 |
-
`
|
| 42 |
-
`
|
| 43 |
-
`
|
| 44 |
-
`
|
|
|
|
| 45 |
|
| 46 |
## Custom
|
| 47 |
|
|
@@ -52,7 +66,11 @@ you can define with by passing it to the `pysr` function, with, e.g.,
|
|
| 52 |
PySRRegressor(
|
| 53 |
...,
|
| 54 |
unary_operators=["myfunction(x) = x^2"],
|
| 55 |
-
binary_operators=["myotherfunction(x, y) = x^2*y"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
)
|
| 57 |
```
|
| 58 |
|
|
@@ -62,7 +80,7 @@ Make sure that it works with
|
|
| 62 |
instead of `1.5e3`, if you write any constant numbers, or simply convert a result to `Float64(...)`.
|
| 63 |
|
| 64 |
PySR expects that operators not throw an error for any input value over the entire real line from `-3.4e38` to `+3.4e38`.
|
| 65 |
-
Thus, for
|
| 66 |
|
| 67 |
```julia
|
| 68 |
my_sqrt(x) = x >= 0 ? sqrt(x) : convert(typeof(x), NaN)
|
|
@@ -71,3 +89,9 @@ my_sqrt(x) = x >= 0 ? sqrt(x) : convert(typeof(x), NaN)
|
|
| 71 |
would be a valid operator. The genetic algorithm
|
| 72 |
will preferentially selection expressions which avoid
|
| 73 |
any invalid values over the training dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
## Pre-defined
|
| 4 |
|
| 5 |
+
First, note that pretty much any valid Julia function which
|
| 6 |
+
takes one or two scalars as input, and returns on scalar as output,
|
| 7 |
+
is likely to be a valid operator[^1].
|
| 8 |
+
A selection of these and other valid operators are stated below.
|
| 9 |
|
| 10 |
**Binary**
|
| 11 |
|
| 12 |
+
- `+`
|
| 13 |
+
- `-`
|
| 14 |
+
- `*`
|
| 15 |
+
- `/`
|
| 16 |
+
- `^`
|
| 17 |
+
- `cond`
|
| 18 |
+
- Equal to `(x, y) -> x > 0 ? y : 0`
|
| 19 |
+
- `greater`
|
| 20 |
+
- Equal to `(x, y) -> x > y ? 1 : 0`
|
| 21 |
+
- `logical_or`
|
| 22 |
+
- Equal to `(x, y) -> (x > 0 || y > 0) ? 1 : 0`
|
| 23 |
+
- `logical_and`
|
| 24 |
+
- Equal to `(x, y) -> (x > 0 && y > 0) ? 1 : 0`
|
| 25 |
+
- `mod`
|
| 26 |
|
| 27 |
**Unary**
|
| 28 |
|
| 29 |
+
- `neg`
|
| 30 |
+
- `square`
|
| 31 |
+
- `cube`
|
| 32 |
+
- `exp`
|
| 33 |
+
- `abs`
|
| 34 |
+
- `log`
|
| 35 |
+
- `log10`
|
| 36 |
+
- `log2`
|
| 37 |
+
- `log1p`
|
| 38 |
+
- `sqrt`
|
| 39 |
+
- `sin`
|
| 40 |
+
- `cos`
|
| 41 |
+
- `tan`
|
| 42 |
+
- `sinh`
|
| 43 |
+
- `cosh`
|
| 44 |
+
- `tanh`
|
| 45 |
+
- `atan`
|
| 46 |
+
- `asinh`
|
| 47 |
+
- `acosh`
|
| 48 |
+
- `atanh_clip`
|
| 49 |
+
- Equal to `atanh(mod(x + 1, 2) - 1)`
|
| 50 |
+
- `erf`
|
| 51 |
+
- `erfc`
|
| 52 |
+
- `gamma`
|
| 53 |
+
- `relu`
|
| 54 |
+
- `round`
|
| 55 |
+
- `floor`
|
| 56 |
+
- `ceil`
|
| 57 |
+
- `round`
|
| 58 |
+
- `sign`
|
| 59 |
|
| 60 |
## Custom
|
| 61 |
|
|
|
|
| 66 |
PySRRegressor(
|
| 67 |
...,
|
| 68 |
unary_operators=["myfunction(x) = x^2"],
|
| 69 |
+
binary_operators=["myotherfunction(x, y) = x^2*y"],
|
| 70 |
+
extra_sympy_mappings={
|
| 71 |
+
"myfunction": lambda x: x**2,
|
| 72 |
+
"myotherfunction": lambda x, y: x**2 * y,
|
| 73 |
+
},
|
| 74 |
)
|
| 75 |
```
|
| 76 |
|
|
|
|
| 80 |
instead of `1.5e3`, if you write any constant numbers, or simply convert a result to `Float64(...)`.
|
| 81 |
|
| 82 |
PySR expects that operators not throw an error for any input value over the entire real line from `-3.4e38` to `+3.4e38`.
|
| 83 |
+
Thus, for invalid inputs, such as negative numbers to a `sqrt` function, you may simply return a `NaN` of the same type as the input. For example,
|
| 84 |
|
| 85 |
```julia
|
| 86 |
my_sqrt(x) = x >= 0 ? sqrt(x) : convert(typeof(x), NaN)
|
|
|
|
| 89 |
would be a valid operator. The genetic algorithm
|
| 90 |
will preferentially selection expressions which avoid
|
| 91 |
any invalid values over the training dataset.
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
<!-- Footnote for 1: -->
|
| 95 |
+
<!-- (Will say "However, you may need to define a `extra_sympy_mapping`":) -->
|
| 96 |
+
|
| 97 |
+
[^1]: However, you will need to define a sympy equivalent in `extra_sympy_mapping` if you want to use a function not in the above list.
|