Momina222's picture
add files
eb74c88
# ============================================================
# SD_roster_real - Fixed Team Production Planning (Option A)
# - Uses config-style variable names from src/config/optimization_config.py
# - Team per product (simultaneous): UNICEF Fixed term / Humanizer
# - Line types via numeric ids: 6=long, 7=short
# - One product per (line, shift, day)
# - Weekly demand (across DATE_SPAN)
# ============================================================
from ortools.linear_solver import pywraplp
from math import ceil
from src.config.constants import ShiftType, LineType, KitLevel
# ---- config import (ํ”„๋กœ์ ํŠธ ๊ฒฝ๋กœ์— ๋งž์ถฐ ์กฐ์ •) ----
from src.config.optimization_config import (
DATE_SPAN, # [1..N]
get_product_list, # DYNAMIC: list of products (e.g., ['A','B',...])
EMPLOYEE_TYPE_LIST, # e.g., ['UNICEF Fixed term','Humanizer']
SHIFT_LIST, # e.g., [1,2,3]
LINE_LIST, # e.g., [6,7] (line type ids)
LINE_CNT_PER_TYPE, # {6: count_of_long_lines, 7: count_of_short_lines}
get_demand_dictionary, # DYNAMIC: {product: total_units_over_period}
COST_LIST_PER_EMP_SHIFT, # {emp_type: {shift: cost_per_hour}}
MAX_EMPLOYEE_PER_TYPE_ON_DAY, # {emp_type: {t: headcount}}
MAX_HOUR_PER_PERSON_PER_DAY, # e.g., 14
MAX_HOUR_PER_SHIFT_PER_PERSON, # {1: hours, 2: hours, 3: hours}
PER_PRODUCT_SPEED, # {6: cap_units_per_hour, 7: cap_units_per_hour}
MAX_PARALLEL_WORKERS, # {6: max_workers, 7: max_workers}
DAILY_WEEKLY_SCHEDULE, # 'daily' or 'weekly'
FIXED_STAFF_CONSTRAINT_MODE, # not used in fixed-team model (๋™์‹œ ํˆฌ์ž…์ด๋ผ ๋ฌด์˜๋ฏธ)
get_team_requirements, # DYNAMIC: {emp_type: {product: team_size}} from Kits_Calculation.csv
PAYMENT_MODE_CONFIG, # {shift: 'bulk'/'partial'} payment mode configuration
KIT_LINE_MATCH_DICT,
EVENING_SHIFT_MODE,
EVENING_SHIFT_DEMAND_THRESHOLD,
# Hierarchy variables for production ordering
KIT_LEVELS, # {kit_id: level} where 0=prepack, 1=subkit, 2=master
KIT_DEPENDENCIES, # {kit_id: [dependency_list]}
PRODUCTION_PRIORITY_ORDER, # [kit_ids] sorted by production priority
# Fixed staffing requirements
FIXED_MIN_UNICEF_PER_DAY, # Minimum UNICEF employees required per day
)
# -----------------------------------------
# ์ถ”๊ฐ€ ํŒŒ๋ผ๋ฏธํ„ฐ ์„ค์ • (config์— ์—†๋˜ ๊ฒƒ๋“ค) - TODO: ์‹ค์ œ ๊ฐ’ ์ฑ„์šฐ์„ธ์š”
# -----------------------------------------
# 2) kit_line_match
KIT_LINE_MATCH_DICT
print("KIT_LINE_MATCH_DICT",KIT_LINE_MATCH_DICT)
# 3) If specific product is not produced on specific date, set it to 0
# ACTIVE will be built dynamically in solve function based on fresh PRODUCT_LIST
# Example: ACTIVE[2]['C'] = 0 # Disable product C on day 2
def build_lines():
"""List of line instances.
L elements are (line_type_id, idx) tuples. e.g., (6,1), (6,2), (7,1), ...
"""
L = []
for lt in LINE_LIST: # lt: 6 or 7
cnt = int(LINE_CNT_PER_TYPE.get(lt, 0))
for i in range(1, cnt + 1):
L.append((lt, i))
return L
L=build_lines()
print("L",L)
print("PER_PRODUCT_SPEED",PER_PRODUCT_SPEED)
def sort_products_by_hierarchy(product_list):
"""
Sort products by hierarchy levels and dependencies using topological sorting.
Returns products in optimal production order: prepacks โ†’ subkits โ†’ masters
Dependencies within the same level are properly ordered.
"""
from collections import defaultdict, deque
# Filter products that are in our production list and have hierarchy data
products_with_hierarchy = [p for p in product_list if p in KIT_LEVELS]
products_without_hierarchy = [p for p in product_list if p not in KIT_LEVELS]
if products_without_hierarchy:
print(f"[HIERARCHY] Products without hierarchy data: {products_without_hierarchy}")
# Build dependency graph for products in our list
graph = defaultdict(list) # product -> [dependents]
in_degree = defaultdict(int) # product -> number of dependencies
# Initialize all products
for product in products_with_hierarchy:
in_degree[product] = 0
# Build edges based on actual dependencies
dependency_count = 0
for product in products_with_hierarchy:
deps = KIT_DEPENDENCIES.get(product, [])
for dep in deps:
if dep in products_with_hierarchy: # Only if dependency is in our production list
graph[dep].append(product) # dep -> product
in_degree[product] += 1
dependency_count += 1
print(f"[HIERARCHY] Found {dependency_count} dependency relationships in production list")
# Topological sort with hierarchy level priority
sorted_products = []
queue = deque()
# Start with products that have no dependencies, prioritized by hierarchy level
no_deps = [(KIT_LEVELS.get(p, 999), p) for p in products_with_hierarchy if in_degree[p] == 0]
no_deps.sort() # Sort by (level, product_id)
for _, product in no_deps:
queue.append(product)
while queue:
current = queue.popleft()
sorted_products.append(current)
# Process dependents
dependents = [(KIT_LEVELS.get(dep, 999), dep) for dep in graph[current]]
dependents.sort() # Sort by hierarchy level first
for _, dependent in dependents:
in_degree[dependent] -= 1
if in_degree[dependent] == 0:
queue.append(dependent)
# Check for cycles (shouldn't happen with proper hierarchy)
if len(sorted_products) != len(products_with_hierarchy):
remaining = [p for p in products_with_hierarchy if p not in sorted_products]
print(f"[HIERARCHY] WARNING: Potential circular dependencies detected in: {remaining}")
# Add remaining products sorted by level as fallback
remaining_sorted = sorted(remaining, key=lambda p: (KIT_LEVELS.get(p, 999), p))
sorted_products.extend(remaining_sorted)
# Add products without hierarchy at the end
sorted_products.extend(sorted(products_without_hierarchy))
print(f"[HIERARCHY] Dependency-aware production order: {len(sorted_products)} products")
for i, p in enumerate(sorted_products[:10]): # Show first 10
level = KIT_LEVELS.get(p, "unknown")
level_name = KitLevel.get_name(level)
deps = KIT_DEPENDENCIES.get(p, [])
deps_in_list = [d for d in deps if d in products_with_hierarchy]
print(f" {i+1}. {p} (level {level}={level_name}, deps: {len(deps_in_list)})")
if deps_in_list:
print(f" Dependencies: {deps_in_list}")
if len(sorted_products) > 10:
print(f" ... and {len(sorted_products) - 10} more products")
return sorted_products
# Removed get_dependency_timing_weight function - no longer needed
# Dependency ordering is now handled by topological sorting in sort_products_by_hierarchy()
def solve_fixed_team_weekly():
# *** CRITICAL: Load fresh data to reflect current Streamlit configs ***
print("\n" + "="*60)
print("๐Ÿ”„ LOADING FRESH DATA FOR OPTIMIZATION")
print("="*60)
# Get fresh product list and demand data
PRODUCT_LIST = get_product_list()
DEMAND_DICTIONARY = get_demand_dictionary()
TEAM_REQ_PER_PRODUCT = get_team_requirements(PRODUCT_LIST)
print(f"๐Ÿ“ฆ LOADED PRODUCTS: {len(PRODUCT_LIST)} products")
print(f"๐Ÿ“ˆ LOADED DEMAND: {sum(DEMAND_DICTIONARY.values())} total units")
print(f"๐Ÿ‘ฅ LOADED TEAM REQUIREMENTS: {len(TEAM_REQ_PER_PRODUCT)} employee types")
# Build ACTIVE schedule for fresh product list
ACTIVE = {t: {p: 1 for p in PRODUCT_LIST} for t in DATE_SPAN}
# --- Sets ---
D = list(DATE_SPAN)
# print("D",D)
S = sorted(list(SHIFT_LIST))
E = list(EMPLOYEE_TYPE_LIST) # e.g., ['UNICEF Fixed term','Humanizer']
print("E",E)
# *** HIERARCHY SORTING: Sort products by production priority ***
print("\n" + "="*60)
print("๐Ÿ”— APPLYING HIERARCHY-BASED PRODUCTION ORDERING")
print("="*60)
P_sorted = sort_products_by_hierarchy(list(PRODUCT_LIST))
P = P_sorted # Use sorted product list
L = build_lines()
# --- Short aliases for parameters ---
Hmax_s = dict(MAX_HOUR_PER_SHIFT_PER_PERSON) # per-shift hours
Hmax_daily = MAX_HOUR_PER_PERSON_PER_DAY # {6:cap, 7:cap}
max_workers_line = dict(MAX_PARALLEL_WORKERS) # per line type
N_day = MAX_EMPLOYEE_PER_TYPE_ON_DAY # {emp_type:{t:headcount}}
cost = COST_LIST_PER_EMP_SHIFT # {emp_type:{shift:cost}}
d_week = DEMAND_DICTIONARY # {product: demand over period}
print("d_week",d_week)
# --- Feasibility quick checks ---
# 1) If team size is greater than max_workers_line, block the product-line type combination
for p in P:
req_total = sum(TEAM_REQ_PER_PRODUCT[e][p] for e in E)
lt = KIT_LINE_MATCH_DICT.get(p, 6) # Default to long line (6) if not found
if p not in KIT_LINE_MATCH_DICT:
print(f"[WARN] Product {p}: No line type mapping found, defaulting to long line (6)")
if req_total > max_workers_line.get(lt, 1e9):
print(f"[WARN] Product {p}: team size {req_total} > MAX_PARALLEL_WORKERS[{lt}] "
f"= {max_workers_line.get(lt)}. Blocked.")
# 2) Check if demand can be met without evening shift (only if in normal mode)
if EVENING_SHIFT_MODE == "normal":
total_demand = sum(DEMAND_DICTIONARY.get(p, 0) for p in P)
# Calculate maximum capacity with regular + overtime shifts only
regular_overtime_shifts = [s for s in S if s in ShiftType.REGULAR_AND_OVERTIME]
max_capacity = 0
for p in P:
if p in PER_PRODUCT_SPEED:
product_speed = PER_PRODUCT_SPEED[p] # units per hour
# Calculate max hours available for this product across all lines and shifts
max_hours_per_product = 0
for ell in L:
for s in regular_overtime_shifts:
for t in D:
max_hours_per_product += Hmax_s[s]
max_capacity += product_speed * max_hours_per_product
capacity_ratio = max_capacity / total_demand if total_demand > 0 else float('inf')
print(f"[CAPACITY CHECK] Total demand: {total_demand}")
print(f"[CAPACITY CHECK] Max capacity (Regular + Overtime): {max_capacity:.1f}")
print(f"[CAPACITY CHECK] Capacity ratio: {capacity_ratio:.2f}")
if capacity_ratio < EVENING_SHIFT_DEMAND_THRESHOLD:
print(f"\n๐Ÿšจ [ALERT] DEMAND TOO HIGH!")
print(f" Current capacity can only meet {capacity_ratio*100:.1f}% of demand")
print(f" Threshold: {EVENING_SHIFT_DEMAND_THRESHOLD*100:.1f}%")
print(f" RECOMMENDATION: Change EVENING_SHIFT_MODE to 'activate_evening' to enable evening shift")
print(f" This will add shift 3 to increase capacity\n")
# 3) DAILY_WEEKLY_SCHEDULE warning (current model only enforces weekly demand)
if DAILY_WEEKLY_SCHEDULE.lower() == "daily":
print("[INFO] DAILY_WEEKLY_SCHEDULE='daily' but this model only enforces weekly demand. "
"If daily demand decomposition is needed, please let us know.")
# --- Solver ---
solver = pywraplp.Solver.CreateSolver('CBC')
if not solver:
raise RuntimeError("CBC solver not found.")
INF = solver.infinity()
# --- Variables ---
# Z[p,ell,s,t] โˆˆ {0,1}: 1 if product p runs on (line,shift,day)
Z, T, U = {}, {}, {} # T: run hours, U: production units
for p in P:
for ell in L: # ell = (line_type_id, idx)
for s in S:
for t in D:
Z[p, ell, s, t] = solver.BoolVar(f"Z_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
T[p, ell, s, t] = solver.NumVar(0, Hmax_s[s], f"T_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
U[p, ell, s, t] = solver.NumVar(0, INF, f"U_{p}_{ell[0]}_{ell[1]}_s{s}_d{t}")
# Idle employee variables: IDLE[e,s,t] = number of idle employees of type e in shift s on day t
IDLE = {}
for e in E:
for s in S:
for t in D:
max_idle = N_day[e][t] # Can't have more idle employees than available
IDLE[e, s, t] = solver.IntVar(0, max_idle, f"IDLE_{e}_s{s}_d{t}")
# Note: Binary variables for bulk payment are now created inline in the cost calculation
# --- Objective: total labor cost with payment modes + hierarchy timing penalty ---
print(f"Payment mode configuration: {PAYMENT_MODE_CONFIG}")
# Build cost terms based on payment mode
cost_terms = []
for e in E:
for s in S:
payment_mode = PAYMENT_MODE_CONFIG.get(s, "partial") # Default to partial if not specified
if payment_mode == "partial":
# Partial payment: pay for actual hours worked
for p in P:
for ell in L:
for t in D:
cost_terms.append(cost[e][s] * TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, s, t])
elif payment_mode == "bulk":
# Bulk payment: if employees work ANY hours in a shift, pay them for FULL shift hours
# BUT only pay the employees who actually work, not all employees of that type
for p in P:
for ell in L:
for t in D:
# Calculate actual employees working: TEAM_REQ_PER_PRODUCT[e][p] employees work T[p,ell,s,t] hours
# For bulk payment: if T[p,ell,s,t] > 0, pay TEAM_REQ_PER_PRODUCT[e][p] employees for full shift
# We need a binary variable for each (e,s,p,ell,t) combination
# But we can use the existing logic: if T > 0, then those specific employees get bulk pay
# Create binary variable for this specific work assignment
work_binary = solver.BoolVar(f"work_{e}_s{s}_{p}_{ell[0]}{ell[1]}_d{t}")
# Link work_binary to T[p,ell,s,t]: work_binary = 1 if T > 0
solver.Add(T[p, ell, s, t] <= Hmax_s[s] * work_binary)
solver.Add(work_binary * 0.001 <= T[p, ell, s, t])
# Cost: pay the specific working employees for full shift hours
cost_terms.append(cost[e][s] * Hmax_s[s] * TEAM_REQ_PER_PRODUCT[e][p] * work_binary)
# Add idle employee costs (idle employees are paid for full shift hours)
for e in E:
for s in S:
for t in D:
cost_terms.append(cost[e][s] * Hmax_s[s] * IDLE[e, s, t])
total_cost = solver.Sum(cost_terms)
# Objective: minimize total cost only
# Dependency ordering is handled by topological sorting and hard constraints
solver.Minimize(total_cost)
# --- Constraints ---
# 1) Weekly demand - must meet exactly (no over/under production)
for p in P:
total_production = solver.Sum(U[p, ell, s, t] for ell in L for s in S for t in D)
demand = d_week.get(p, 0)
# Must produce at least the demand
solver.Add(total_production >= demand)
# Must not produce more than the demand (prevent overproduction)
solver.Add(total_production <= demand)
# 2) One product per (line,shift,day) + time gating
for ell in L:
for s in S:
for t in D:
solver.Add(solver.Sum(Z[p, ell, s, t] for p in P) <= 1)
for p in P:
solver.Add(T[p, ell, s, t] <= Hmax_s[s] * Z[p, ell, s, t])
# 3) Product-line type compatibility + (optional) activity by day
for p in P:
req_lt = KIT_LINE_MATCH_DICT.get(p, LineType.LONG_LINE) # Default to long line if not found
req_total = sum(TEAM_REQ_PER_PRODUCT[e][p] for e in E)
for ell in L:
allowed = (ell[0] == req_lt) and (req_total <= max_workers_line.get(ell[0], 1e9))
for s in S:
for t in D:
if ACTIVE[t][p] == 0 or not allowed:
solver.Add(Z[p, ell, s, t] == 0)
solver.Add(T[p, ell, s, t] == 0)
solver.Add(U[p, ell, s, t] == 0)
# 4) Line throughput: U โ‰ค product_speed * T
for p in P:
for ell in L:
for s in S:
for t in D:
# Get product speed (same speed regardless of line type)
if p in PER_PRODUCT_SPEED:
# Convert kit per day to kit per hour (assuming 7.5 hour workday)
speed = PER_PRODUCT_SPEED[p]
# Upper bound: units cannot exceed capacity
solver.Add(
U[p, ell, s, t] <= speed * T[p, ell, s, t]
)
# Lower bound: if working, must produce (prevent phantom work)
solver.Add(
U[p, ell, s, t] >= speed * T[p, ell, s, t]
)
else:
# Default speed if not found
default_speed = 800 / 7.5 # units per hour
print(f"Warning: No speed data for product {p}, using default {default_speed:.1f} per hour")
# Upper bound: units cannot exceed capacity
solver.Add(
U[p, ell, s, t] <= default_speed * T[p, ell, s, t]
)
# Lower bound: if working, must produce (prevent phantom work)
solver.Add(
U[p, ell, s, t] >= default_speed * T[p, ell, s, t]
)
# 5) Per-shift staffing capacity by type: idle employees โ‰ค available headcount
for e in E:
for s in S:
for t in D:
# Idle employees cannot exceed available headcount
# (Active employees are constrained by the working hours constraint below)
solver.Add(IDLE[e, s, t] <= N_day[e][t])
# Working hours constraint: active employees cannot exceed shift hour capacity
solver.Add(
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, s, t] for p in P for ell in L)
<= Hmax_s[s] * N_day[e][t]
)
# 6) Per-day staffing capacity by type: sum(req*hours across shifts) โ‰ค 14h * headcount
for e in E:
for t in D:
solver.Add(
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, s, t] for s in S for p in P for ell in L)
<= MAX_HOUR_PER_PERSON_PER_DAY * N_day[e][t]
)
# 7) Shift ordering constraints (only apply if shifts are available)
# Evening shift after regular shift
if ShiftType.EVENING in S and ShiftType.REGULAR in S: # Only if both shifts are available
for e in E:
for t in D:
solver.Add(
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, ShiftType.EVENING, t] for p in P for ell in L)
<=
solver.Sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, ShiftType.REGULAR, t] for p in P for ell in L)
)
# Overtime should only be used when regular shift is at capacity
if ShiftType.OVERTIME in S and ShiftType.REGULAR in S: # Only if both shifts are available
print("\n[OVERTIME] Adding constraints to ensure overtime only when regular shift is insufficient...")
for e in E:
for t in D:
# Get available regular capacity for this employee type and day
regular_capacity = N_day[e][t]
# Total regular shift usage for this employee type and day
regular_usage = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, ShiftType.REGULAR, t]
for p in P for ell in L
)
# Total overtime usage for this employee type and day
overtime_usage = solver.Sum(
TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, ShiftType.OVERTIME, t]
for p in P for ell in L
)
# Create binary variable: 1 if using overtime, 0 otherwise
using_overtime = solver.IntVar(0, 1, f'using_overtime_{e}_{t}')
# If using overtime, regular capacity must be utilized significantly
# Regular usage must be at least 90% of capacity to allow overtime
min_regular_for_overtime = int(0.9 * regular_capacity)
# Constraint 1: Can only use overtime if regular usage is high
solver.Add(regular_usage >= min_regular_for_overtime * using_overtime)
# Constraint 2: If any overtime is used, set the binary variable
solver.Add(overtime_usage <= regular_capacity * using_overtime)
overtime_constraints_added = len(E) * len(D) * 2 # 2 constraints per employee type per day
print(f"[OVERTIME] Added {overtime_constraints_added} constraints ensuring overtime only when regular shifts are at 90%+ capacity")
# 7.5) Bulk payment linking constraints are now handled inline in the cost calculation
# 7.6) *** FIXED MINIMUM UNICEF EMPLOYEES CONSTRAINT ***
# Ensure minimum UNICEF fixed-term staff are present every working day
if 'UNICEF Fixed term' in E and FIXED_MIN_UNICEF_PER_DAY > 0:
print(f"\n[FIXED STAFFING] Adding constraint for minimum {FIXED_MIN_UNICEF_PER_DAY} UNICEF employees per day...")
unicef_constraints_added = 0
for t in D:
# Method 1: Simple approach - ensure minimum UNICEF employees are scheduled
# regardless of whether they're working or idle
# Sum up all possible UNICEF work assignments + idle UNICEF employees
# Count all UNICEF work hours across all products, lines, and shifts
all_unicef_hours = solver.Sum(
TEAM_REQ_PER_PRODUCT.get('UNICEF Fixed term', {}).get(p, 0) * T[p, ell, s, t]
for p in P
for ell in L
for s in S
)
# Count idle UNICEF employees across all shifts
idle_unicef_employees = solver.Sum(
IDLE['UNICEF Fixed term', s, t] for s in S
)
# Constraint: total hours (work + idle*14) must meet minimum staffing
# This ensures at least FIXED_MIN_UNICEF_PER_DAY employees are present
solver.Add(all_unicef_hours + idle_unicef_employees * MAX_HOUR_PER_PERSON_PER_DAY >= FIXED_MIN_UNICEF_PER_DAY * MAX_HOUR_PER_PERSON_PER_DAY)
# Additional constraint: ensure idle employees are properly linked to total headcount
# This prevents the solver from avoiding the minimum by setting everyone to zero
total_unicef_hours_needed_for_production = solver.Sum(
TEAM_REQ_PER_PRODUCT.get('UNICEF Fixed term', {}).get(p, 0) * T[p, ell, s, t]
for p in P for ell in L for s in S
)
# Simpler approach: just ensure the basic constraint is strong enough
# The main constraint above should be sufficient: all_unicef_hours + idle*14 >= min*14
# This already forces idle employees when production is insufficient
unicef_constraints_added += 1
print(f"[FIXED STAFFING] Added {unicef_constraints_added} constraints ensuring >= {FIXED_MIN_UNICEF_PER_DAY} UNICEF employees per day")
# 8) *** HIERARCHY DEPENDENCY CONSTRAINTS ***
# For subkits with prepack dependencies: dependencies should be produced before or same time
print("\n[HIERARCHY] Adding dependency constraints...")
dependency_constraints_added = 0
for p in P:
dependencies = KIT_DEPENDENCIES.get(p, [])
if dependencies:
# Get the level of the current product
p_level = KIT_LEVELS.get(p, 2)
for dep in dependencies:
if dep in P: # Only if dependency is also in production list
# Calculate "completion time" for each product (sum of all production times)
p_completion = solver.Sum(
t * T[p, ell, s, t] for ell in L for s in S for t in D
)
dep_completion = solver.Sum(
t * T[dep, ell, s, t] for ell in L for s in S for t in D
)
# Dependency should complete before or at the same time
solver.Add(dep_completion <= p_completion)
dependency_constraints_added += 1
print(f" Added constraint: {dep} (dependency) <= {p} (level {p_level})")
print(f"[HIERARCHY] Added {dependency_constraints_added} dependency constraints")
# --- Solve ---
status = solver.Solve()
if status != pywraplp.Solver.OPTIMAL:
status_names = {pywraplp.Solver.INFEASIBLE: "INFEASIBLE", pywraplp.Solver.UNBOUNDED: "UNBOUNDED"}
print(f"No optimal solution. Status: {status} ({status_names.get(status, 'UNKNOWN')})")
# Debug hint:
# solver.EnableOutput()
# solver.ExportModelAsLpFile("model.lp")
return None
# --- Report ---
result = {}
result['objective'] = solver.Objective().Value()
# Weekly production
prod_week = {p: sum(U[p, ell, s, t].solution_value() for ell in L for s in S for t in D) for p in P}
result['weekly_production'] = prod_week
# Which product ran on which line/shift/day
schedule = []
for t in D:
for ell in L:
for s in S:
chosen = [p for p in P if Z[p, ell, s, t].solution_value() > 0.5]
if chosen:
p = chosen[0]
schedule.append({
'day': t,
'line_type_id': ell[0],
'line_idx': ell[1],
'shift': s,
'product': p,
'run_hours': T[p, ell, s, t].solution_value(),
'units': U[p, ell, s, t].solution_value(),
})
result['run_schedule'] = schedule
# Implied headcount by type/shift/day (ceil)
headcount = []
for e in E:
for s in S:
for t in D:
used_ph = sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, s, t].solution_value() for p in P for ell in L)
need = ceil(used_ph / (Hmax_s[s] + 1e-9))
headcount.append({'emp_type': e, 'shift': s, 'day': t,
'needed': need, 'available': N_day[e][t]})
result['headcount_per_shift'] = headcount
# Total person-hours by type/day (โ‰ค 14h * headcount)
ph_by_day = []
for e in E:
for t in D:
used = sum(TEAM_REQ_PER_PRODUCT[e][p] * T[p, ell, s, t].solution_value() for s in S for p in P for ell in L)
ph_by_day.append({'emp_type': e, 'day': t,
'used_person_hours': used,
'cap_person_hours': Hmax_daily * N_day[e][t]})
result['person_hours_by_day'] = ph_by_day
# Idle employee data for visualization
idle_employees = []
for e in E:
for s in S:
for t in D:
idle_count = IDLE[e, s, t].solution_value()
if idle_count > 0: # Only include non-zero idle counts
idle_employees.append({
'emp_type': e,
'shift': s,
'day': t,
'idle_count': idle_count
})
result['idle_employees'] = idle_employees
# Pretty print
print("Objective (min cost):", result['objective'])
print("\n--- Weekly production by product ---")
for p, u in prod_week.items():
print(f"{p}: {u:.1f} / demand {d_week.get(p,0)}")
print("\n--- Schedule (line, shift, day) ---")
for row in schedule:
shift_name = ShiftType.get_name(row['shift'])
line_name = LineType.get_name(row['line_type_id'])
print(f"D{row['day']} {line_name}-{row['line_idx']} {shift_name}: "
f"{row['product']} T={row['run_hours']:.2f}h U={row['units']:.1f}")
print("\n--- Implied headcount need (per type/shift/day) ---")
for row in headcount:
shift_name = ShiftType.get_name(row['shift'])
print(f"{row['emp_type']}, {shift_name}, D{row['day']}: "
f"need={row['needed']} (avail {row['available']})")
print("\n--- Total person-hours by type/day ---")
for row in ph_by_day:
print(f"{row['emp_type']}, D{row['day']}: used={row['used_person_hours']:.1f} "
f"(cap {row['cap_person_hours']})")
# Report idle employees
print("\n--- Idle employees (per type/shift/day) ---")
idle_found = False
for e in E:
for s in S:
for t in D:
idle_count = IDLE[e, s, t].solution_value()
if idle_count > 0:
shift_name = ShiftType.get_name(s)
print(f"{e}, {shift_name}, D{t}: idle={idle_count}")
idle_found = True
if not idle_found:
print("No idle employees scheduled")
return result
if __name__ == "__main__":
solve_fixed_team_weekly()