Spaces:
Sleeping
Sleeping
File size: 24,712 Bytes
1bb4678 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 |
# Path: QAgents-workflos/tests/test_problems.py
# Relations: Used by evaluation_harness.py, run_evaluation.py
# Description: Real quantum computing problems requiring LLM reasoning
# Each problem has increasing complexity and real-world relevance
"""
Test Problems Module: Real Quantum Computing Challenges
TESTING FRAMEWORK DESIGN:
=========================
Each problem requires actual LLM reasoning to solve - no hardcoded templates.
The LLM must understand the quantum mechanics and generate appropriate QASM.
EVALUATION MODES:
-----------------
1. NAKED: 1 LLM call per problem (direct reasoning, no agents)
2. GUIDED: 1 + 4 LLM calls (initial + architect/builder/validator/scorer agents)
3. BLACKBOARD: 1 + 8-12 LLM calls (initial + collaborative agent rounds)
PROBLEM CATEGORIES:
-------------------
EASY (1-2 qubits, 1-3 gates):
- Fundamental single/two-qubit operations
- Direct QASM generation possible
MEDIUM (2-3 qubits, 4-8 gates):
- Require understanding of gate decomposition
- Multiple valid solutions possible
HARD (3+ qubits, 8+ gates):
- Algorithm implementation
- Optimization considerations
- Real-world applications
"""
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Any
from enum import Enum
class ProblemDifficulty(Enum):
"""Problem difficulty levels."""
EASY = "easy"
MEDIUM = "medium"
HARD = "hard"
VERY_HARD = "very_hard" # New: Push NAKED to its limits
class ProblemCategory(Enum):
"""Problem categories for research tracking."""
STATE_PREPARATION = "state_prep"
GATE_SYNTHESIS = "gate_synthesis"
ALGORITHM = "algorithm"
ERROR_CORRECTION = "error_correction"
OPTIMIZATION = "optimization"
@dataclass
class ExpectedOutput:
"""Expected output for validation."""
min_qubits: int
max_qubits: int = 10
max_depth: Optional[int] = None
required_gates: List[str] = field(default_factory=list)
forbidden_gates: List[str] = field(default_factory=list)
expected_states: Dict[str, float] = field(default_factory=dict)
tolerance: float = 0.1 # Probability tolerance for state matching
must_be_unitary: bool = True
hardware_compatible: bool = True
@dataclass
class TestProblem:
"""A quantum circuit test problem for LLM evaluation."""
id: str
name: str
description: str
# The prompt sent to the LLM - must require reasoning
prompt: str
# Category and difficulty for analysis
difficulty: ProblemDifficulty
category: ProblemCategory
# Validation criteria
expected: ExpectedOutput
# Metadata for research tracking
tags: List[str] = field(default_factory=list)
reference_solution: Optional[str] = None # Known optimal QASM
optimal_depth: Optional[int] = None
optimal_gate_count: Optional[int] = None
# Research tracking
requires_understanding: List[str] = field(default_factory=list)
common_mistakes: List[str] = field(default_factory=list)
@property
def goal(self) -> str:
"""Alias for prompt - used by orchestrators."""
return self.prompt
# =============================================================================
# EASY PROBLEMS: Fundamental Quantum Operations
# =============================================================================
PROBLEM_E1_PHASE_FLIP = TestProblem(
id="easy_001",
name="Phase Flip State",
description="Create the |−⟩ state (phase-flipped superposition)",
prompt="""Create a quantum circuit that prepares the |−⟩ state.
The |−⟩ state is defined as: (|0⟩ - |1⟩)/√2
This is different from the |+⟩ state which is (|0⟩ + |1⟩)/√2.
Requirements:
- Use a single qubit
- The final state should have equal probability of 0 and 1
- But the relative phase between them should be π (negative)
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.EASY,
category=ProblemCategory.STATE_PREPARATION,
expected=ExpectedOutput(
min_qubits=1,
max_qubits=1,
max_depth=2,
required_gates=["h", "z"], # or x then h
expected_states={"0": 0.5, "1": 0.5}
),
tags=["superposition", "phase", "single-qubit"],
requires_understanding=["Hadamard gate", "Z gate", "quantum phases"],
common_mistakes=["Using only H (creates |+⟩ not |−⟩)", "Wrong gate order"],
optimal_depth=2,
optimal_gate_count=2
)
PROBLEM_E2_CONTROLLED_NOT = TestProblem(
id="easy_002",
name="Entanglement Generation",
description="Create maximal entanglement between two qubits",
prompt="""Create a quantum circuit that maximally entangles two qubits.
Starting from |00⟩, create the Bell state |Φ+⟩ = (|00⟩ + |11⟩)/√2
Requirements:
- Use exactly 2 qubits
- Measuring both qubits should give 00 or 11 with equal probability
- The qubits must be entangled (not just in superposition)
Think about what gates create entanglement.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.EASY,
category=ProblemCategory.STATE_PREPARATION,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=3,
required_gates=["h", "cx"],
expected_states={"00": 0.5, "11": 0.5}
),
tags=["entanglement", "bell", "cnot"],
requires_understanding=["Hadamard gate", "CNOT gate", "entanglement"],
common_mistakes=["Applying H to both qubits (no entanglement)", "Wrong CNOT direction"],
optimal_depth=2,
optimal_gate_count=2
)
PROBLEM_E3_MEASUREMENT_BASIS = TestProblem(
id="easy_003",
name="X-Basis Measurement Prep",
description="Prepare a state for X-basis measurement",
prompt="""Create a circuit that transforms a Z-basis state into X-basis.
Starting with |0⟩, prepare the state so that if we were to measure in the
X-basis (instead of Z-basis), we would get |+⟩ deterministically.
In other words: Transform |0⟩ → |+⟩ where |+⟩ = (|0⟩ + |1⟩)/√2
Requirements:
- Single qubit circuit
- The state should be the +1 eigenstate of the X operator
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.EASY,
category=ProblemCategory.STATE_PREPARATION,
expected=ExpectedOutput(
min_qubits=1,
max_qubits=1,
max_depth=1,
required_gates=["h"],
expected_states={"0": 0.5, "1": 0.5}
),
tags=["basis-change", "hadamard", "measurement"],
requires_understanding=["Measurement bases", "Hadamard as basis change"],
common_mistakes=["Not understanding basis transformation"],
optimal_depth=1,
optimal_gate_count=1
)
# =============================================================================
# MEDIUM PROBLEMS: Gate Decomposition and Multi-Qubit Operations
# =============================================================================
PROBLEM_M1_SWAP_DECOMPOSITION = TestProblem(
id="medium_001",
name="SWAP from CNOTs",
description="Implement SWAP gate using only CNOT gates",
prompt="""Decompose the SWAP gate into basic gates.
The SWAP gate exchanges the states of two qubits:
SWAP|ab⟩ = |ba⟩
You must implement SWAP using only CNOT gates (no native SWAP allowed).
Requirements:
- Use exactly 2 qubits
- Only use CNOT (cx) gates - no other two-qubit gates
- The circuit should swap the state of qubit 0 and qubit 1
- Test: if input is |01⟩, output should be |10⟩
Hint: CNOT can be thought of as conditional bit flip.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.MEDIUM,
category=ProblemCategory.GATE_SYNTHESIS,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=6,
required_gates=["cx"],
forbidden_gates=["swap"]
),
tags=["decomposition", "swap", "cnot-only"],
requires_understanding=["CNOT behavior", "Gate decomposition"],
common_mistakes=["Wrong number of CNOTs", "Wrong CNOT directions"],
reference_solution="OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\ncx q[0],q[1];\ncx q[1],q[0];\ncx q[0],q[1];",
optimal_depth=3,
optimal_gate_count=3
)
PROBLEM_M2_CONTROLLED_Z = TestProblem(
id="medium_002",
name="CZ from Basic Gates",
description="Build Controlled-Z using H and CNOT",
prompt="""Implement the Controlled-Z (CZ) gate using only Hadamard and CNOT gates.
The CZ gate applies a Z gate to the target qubit when the control is |1⟩:
CZ|00⟩ = |00⟩
CZ|01⟩ = |01⟩
CZ|10⟩ = |10⟩
CZ|11⟩ = -|11⟩ (note the phase flip!)
Requirements:
- Use only H and CNOT gates
- No native CZ gate allowed
- 2 qubits
Hint: Think about how H transforms Z operations.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.MEDIUM,
category=ProblemCategory.GATE_SYNTHESIS,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=5,
required_gates=["h", "cx"],
forbidden_gates=["cz"]
),
tags=["decomposition", "controlled-z", "phase"],
requires_understanding=["CZ gate definition", "H-Z-H = X identity"],
common_mistakes=["Forgetting H gates", "Wrong qubit as target"],
reference_solution="OPENQASM 2.0;\ninclude \"qelib1.inc\";\nqreg q[2];\nh q[1];\ncx q[0],q[1];\nh q[1];",
optimal_depth=3,
optimal_gate_count=3
)
PROBLEM_M3_PHASE_ESTIMATION_PREP = TestProblem(
id="medium_003",
name="Phase Kickback Setup",
description="Create the phase kickback configuration",
prompt="""Create a circuit demonstrating quantum phase kickback.
Phase kickback is a key concept where applying a controlled-U gate
causes the control qubit to acquire the eigenvalue phase.
Setup:
1. Prepare control qubit in |+⟩ superposition
2. Prepare target qubit in |1⟩ (eigenstate of Z with eigenvalue -1)
3. Apply CZ gate
4. The control qubit should now be in |−⟩ state
The final state of the control qubit (q[0]) should show the phase kickback.
Requirements:
- 2 qubits
- Control in superposition, target in |1⟩
- Apply controlled operation
- Use only basic gates (H, X, CX, CZ allowed)
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.MEDIUM,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=5,
required_gates=["h", "x"],
expected_states={"01": 0.5, "11": 0.5} # After kickback
),
tags=["phase-kickback", "algorithm-primitive", "phase-estimation"],
requires_understanding=["Phase kickback", "Eigenstates", "Controlled operations"],
common_mistakes=["Target not in eigenstate", "Missing superposition"],
optimal_depth=4,
optimal_gate_count=4
)
# =============================================================================
# HARD PROBLEMS: Algorithm Implementation
# =============================================================================
PROBLEM_H1_DEUTSCH = TestProblem(
id="hard_001",
name="Deutsch Algorithm",
description="Implement Deutsch's algorithm for function type detection",
prompt="""Implement Deutsch's algorithm to determine if a function is constant or balanced.
Deutsch's algorithm determines whether a black-box function f:{0,1}→{0,1} is:
- Constant: f(0)=f(1) (always 0 or always 1)
- Balanced: f(0)≠f(1) (different outputs)
For this problem, implement the oracle for the BALANCED function f(x) = x.
Algorithm structure:
1. Initialize |01⟩ (input qubit |0⟩, ancilla qubit |1⟩)
2. Apply H to both qubits
3. Apply the oracle Uf: |x,y⟩ → |x, y⊕f(x)⟩
4. Apply H to the input qubit
5. Measure input qubit: |1⟩ means balanced
For f(x)=x, the oracle is just a CNOT.
Requirements:
- 2 qubits
- Implement full Deutsch circuit with f(x)=x oracle
- After measurement, input qubit should be in |1⟩
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=8,
required_gates=["h", "x", "cx"],
expected_states={"11": 1.0} # Input qubit is 1 (balanced), ancilla is 1
),
tags=["algorithm", "deutsch", "oracle"],
requires_understanding=["Deutsch algorithm", "Oracle construction", "Interference"],
common_mistakes=["Wrong initial state", "Missing ancilla preparation", "Oracle errors"],
optimal_depth=5,
optimal_gate_count=6
)
PROBLEM_H2_GROVER_2QUBIT = TestProblem(
id="hard_002",
name="Grover Search (2-qubit)",
description="Find marked state |11⟩ using Grover's algorithm",
prompt="""Implement 2-qubit Grover's search algorithm to find the state |11⟩.
Grover's algorithm amplifies the probability of the marked state.
For 2 qubits with 1 marked state, we need exactly 1 iteration:
1. Initialize: H⊗H on |00⟩ → equal superposition
2. Oracle: Mark |11⟩ with a phase flip (multiply by -1)
3. Diffusion: Reflect about the average amplitude
Oracle for |11⟩: Apply CZ (or equivalent)
Diffusion operator: H⊗H · (2|00⟩⟨00| - I) · H⊗H
Requirements:
- 2 qubits
- After 1 Grover iteration, |11⟩ should have probability ≈ 1
- Use only basic gates
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=2,
max_qubits=2,
max_depth=12,
required_gates=["h", "x", "cx"],
expected_states={"11": 1.0},
tolerance=0.1
),
tags=["algorithm", "grover", "search", "amplitude-amplification"],
requires_understanding=["Grover's algorithm", "Oracle design", "Diffusion operator"],
common_mistakes=["Wrong oracle phase", "Missing diffusion", "Too many/few iterations"],
optimal_depth=8,
optimal_gate_count=10
)
PROBLEM_H3_TELEPORTATION_PREP = TestProblem(
id="hard_003",
name="Quantum Teleportation Setup",
description="Prepare the entangled resource state for teleportation",
prompt="""Create the initial setup for quantum teleportation.
Quantum teleportation requires:
1. The state to teleport |ψ⟩ on qubit 0
2. A shared Bell pair between qubits 1 and 2
For this problem:
- Prepare qubit 0 in state |+⟩ (the state we'll "teleport")
- Prepare qubits 1 and 2 in the Bell state (|00⟩ + |11⟩)/√2
- Qubit 1 goes to Alice (sender), qubit 2 to Bob (receiver)
Requirements:
- 3 qubits
- q[0]: |+⟩ state (to be teleported)
- q[1], q[2]: Bell pair (shared entanglement)
After this setup, Alice has q[0] and q[1], Bob has q[2].
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=3,
max_qubits=3,
max_depth=4,
required_gates=["h", "cx"]
),
tags=["algorithm", "teleportation", "entanglement", "bell-state"],
requires_understanding=["Quantum teleportation", "Bell states", "Entanglement as resource"],
common_mistakes=["Wrong qubits entangled", "State to teleport not prepared"],
optimal_depth=3,
optimal_gate_count=4
)
# =============================================================================
# PROBLEM SETS
# =============================================================================
EASY_PROBLEMS = [
PROBLEM_E1_PHASE_FLIP,
PROBLEM_E2_CONTROLLED_NOT,
PROBLEM_E3_MEASUREMENT_BASIS
]
MEDIUM_PROBLEMS = [
PROBLEM_M1_SWAP_DECOMPOSITION,
PROBLEM_M2_CONTROLLED_Z,
PROBLEM_M3_PHASE_ESTIMATION_PREP
]
HARD_PROBLEMS = [
PROBLEM_H1_DEUTSCH,
PROBLEM_H2_GROVER_2QUBIT,
PROBLEM_H3_TELEPORTATION_PREP
]
# ============================================================================
# VERY_HARD PROBLEMS: Push NAKED to its limits
# ============================================================================
PROBLEM_VH1_QFT_4QUBIT = TestProblem(
id="very_hard_001",
name="4-Qubit QFT",
description="Implement full Quantum Fourier Transform on 4 qubits",
prompt="""Implement the complete Quantum Fourier Transform (QFT) on 4 qubits.
The QFT transforms computational basis states into Fourier basis:
QFT|x⟩ = (1/√N) Σ_{k=0}^{N-1} e^{2πixk/N} |k⟩
For 4 qubits (N=16), the circuit requires:
1. Apply Hadamard to each qubit in sequence
2. Apply controlled phase rotations (CR_k) between qubits
3. SWAP qubits to correct bit ordering (optional for some conventions)
Phase rotation angles: R_k = rotation by π/2^(k-1)
- R_2 = π/2 (S gate or cp(π/2))
- R_3 = π/4 (T gate or cp(π/4))
- R_4 = π/8 (cp(π/8))
Requirements:
- Use exactly 4 qubits
- Must use H, controlled-phase (cp or crz), and optionally SWAP gates
- Do NOT use QFT as a black box - implement the full decomposition
- Include proper phase rotations between all qubit pairs
The output should show interference patterns in the Fourier basis.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.VERY_HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=4,
max_qubits=4,
max_depth=20,
required_gates=["h"]
),
tags=["qft", "fourier", "phase-rotation", "multi-qubit"],
requires_understanding=["QFT algorithm", "Controlled phase gates", "Bit reversal"],
common_mistakes=["Wrong phase angles", "Missing controlled rotations", "Forgetting bit reversal"],
optimal_depth=12,
optimal_gate_count=16
)
PROBLEM_VH2_GROVER_3QUBIT = TestProblem(
id="very_hard_002",
name="Grover 3-Qubit Search",
description="Implement Grover's search on 3 qubits with 2 iterations",
prompt="""Implement 3-qubit Grover's search algorithm to find the marked state |101⟩.
For 3 qubits (N=8 states), the optimal number of iterations is approximately π√N/4 ≈ 2.
Algorithm structure (repeat 2 times):
1. Initial superposition: H⊗H⊗H on |000⟩
For EACH Grover iteration:
2. Oracle: Mark |101⟩ with phase flip (multiply amplitude by -1)
- Oracle for |101⟩: X on q[1], then CCZ (or Toffoli+phase), then X on q[1]
- Alternative: use multi-controlled Z gate
3. Diffusion operator (Grover diffuser):
- Apply H to all qubits
- Apply X to all qubits
- Apply multi-controlled Z (CCZ or decomposition)
- Apply X to all qubits
- Apply H to all qubits
Requirements:
- Use exactly 3 qubits
- Implement BOTH oracle and diffusion operator
- Perform exactly 2 Grover iterations
- After 2 iterations, |101⟩ should have probability > 0.9
- Use basic gates: H, X, CX, CCX (Toffoli), CZ, or their equivalents
IMPORTANT: You must implement CCZ using either:
- ccx followed by cz and ccx (Toffoli-based)
- h on target, ccx, h on target (standard decomposition)
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.VERY_HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=3,
max_qubits=3,
max_depth=30,
required_gates=["h", "x", "cx"],
expected_states={"101": 0.9},
tolerance=0.15
),
tags=["grover", "search", "oracle", "diffusion", "multi-iteration"],
requires_understanding=["Grover's algorithm", "Multi-controlled gates", "Oracle design", "Diffusion operator"],
common_mistakes=["Wrong oracle", "Single iteration only", "Incorrect diffusion", "Missing CCZ decomposition"],
optimal_depth=24,
optimal_gate_count=40
)
PROBLEM_VH3_VQE_ANSATZ = TestProblem(
id="very_hard_003",
name="VQE Hardware-Efficient Ansatz",
description="Construct a 4-qubit hardware-efficient ansatz for VQE",
prompt="""Construct a 4-qubit hardware-efficient variational ansatz for VQE.
A hardware-efficient ansatz is a parameterized quantum circuit used in VQE
(Variational Quantum Eigensolver) to prepare trial wavefunctions.
Structure (2 layers):
LAYER 1:
1. Apply Ry(θ) rotations to all 4 qubits (use ry gate with parameter, e.g., ry(pi/4))
2. Apply Rz(φ) rotations to all 4 qubits (use rz gate with parameter, e.g., rz(pi/4))
3. Apply entangling CNOT ladder: cx q[0],q[1]; cx q[1],q[2]; cx q[2],q[3];
LAYER 2:
4. Apply Ry(θ') rotations to all 4 qubits
5. Apply Rz(φ') rotations to all 4 qubits
6. Apply entangling CNOT ladder again
For this implementation, use fixed angles:
- Layer 1: ry(0.5) and rz(0.3) on all qubits
- Layer 2: ry(0.7) and rz(0.2) on all qubits
Requirements:
- Use exactly 4 qubits
- Implement 2 full layers (rotation + entanglement each)
- Use ry, rz, and cx gates
- Linear entanglement pattern (nearest-neighbor CNOTs)
This circuit structure is used on real quantum hardware (IBM, Google) for
quantum chemistry and optimization problems.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.VERY_HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=4,
max_qubits=4,
max_depth=16,
required_gates=["ry", "rz", "cx"]
),
tags=["vqe", "ansatz", "variational", "quantum-chemistry", "hardware-efficient"],
requires_understanding=["VQE algorithm", "Parameterized circuits", "Hardware constraints", "Entanglement layers"],
common_mistakes=["Missing rotation layers", "Wrong entanglement pattern", "Incorrect parameter format"],
optimal_depth=12,
optimal_gate_count=22
)
PROBLEM_VH4_BERNSTEIN_VAZIRANI = TestProblem(
id="very_hard_004",
name="Bernstein-Vazirani 4-bit",
description="Implement Bernstein-Vazirani algorithm to find hidden string s=1011",
prompt="""Implement the Bernstein-Vazirani algorithm to find the hidden string s=1011.
The Bernstein-Vazirani algorithm finds a hidden n-bit string s in ONE query.
Given a function f(x) = s·x mod 2 (bitwise dot product), find s.
For s=1011 (4 bits), we need 5 qubits (4 input + 1 ancilla):
Algorithm:
1. Initialize all input qubits to |0⟩, ancilla to |1⟩
2. Apply H to all 5 qubits (creates superposition + phase kickback setup)
3. Apply Oracle U_f: For each bit s_i=1, apply CNOT from q[i] to ancilla
- s=1011 means: CNOT from q[0] to q[4], q[2] to q[4], q[3] to q[4]
- (s[0]=1, s[1]=0, s[2]=1, s[3]=1 → control qubits 0, 2, 3)
4. Apply H to all input qubits (NOT the ancilla)
5. Measure input qubits → reveals s directly
Requirements:
- Use 5 qubits (q[0-3] for input, q[4] for ancilla)
- Prepare ancilla in |1⟩ state before Hadamards
- Oracle: CNOT from q[0], q[2], q[3] to q[4] (positions where s has 1)
- Apply final Hadamards only to input qubits
- Measure input qubits → should give |1011⟩
After measurement, the input register should read 1011 with probability 1.0.
Provide the OpenQASM 2.0 circuit.""",
difficulty=ProblemDifficulty.VERY_HARD,
category=ProblemCategory.ALGORITHM,
expected=ExpectedOutput(
min_qubits=5,
max_qubits=5,
max_depth=10,
required_gates=["h", "x", "cx"],
expected_states={"10111": 1.0}, # 1011 in input register, 1 in ancilla
tolerance=0.05
),
tags=["bernstein-vazirani", "oracle", "hidden-string", "query-complexity"],
requires_understanding=["Bernstein-Vazirani algorithm", "Oracle construction", "Phase kickback"],
common_mistakes=["Wrong oracle CNOTs", "Missing ancilla preparation", "Hadamards on ancilla"],
optimal_depth=6,
optimal_gate_count=15
)
VERY_HARD_PROBLEMS = [
PROBLEM_VH1_QFT_4QUBIT,
PROBLEM_VH2_GROVER_3QUBIT,
PROBLEM_VH3_VQE_ANSATZ,
PROBLEM_VH4_BERNSTEIN_VAZIRANI
]
ALL_PROBLEMS = EASY_PROBLEMS + MEDIUM_PROBLEMS + HARD_PROBLEMS + VERY_HARD_PROBLEMS
# Problem registry by ID
PROBLEMS_BY_ID = {p.id: p for p in ALL_PROBLEMS}
def get_problem(problem_id: str) -> Optional[TestProblem]:
"""Get a problem by ID."""
return PROBLEMS_BY_ID.get(problem_id)
def get_problems_by_difficulty(difficulty: ProblemDifficulty) -> List[TestProblem]:
"""Get all problems of a specific difficulty."""
# Handle string input
if isinstance(difficulty, str):
difficulty = ProblemDifficulty(difficulty.lower())
return [p for p in ALL_PROBLEMS if p.difficulty == difficulty]
def get_problems_by_category(category: ProblemCategory) -> List[TestProblem]:
"""Get all problems of a specific category."""
return [p for p in ALL_PROBLEMS if p.category == category]
def get_problems_by_tag(tag: str) -> List[TestProblem]:
"""Get all problems with a specific tag."""
return [p for p in ALL_PROBLEMS if tag in p.tags]
def get_research_problem_set() -> List[TestProblem]:
"""Get the standard research evaluation set (3 problems, one per difficulty)."""
return [
PROBLEM_E1_PHASE_FLIP, # Easy: Phase flip state
PROBLEM_M1_SWAP_DECOMPOSITION, # Medium: SWAP decomposition
PROBLEM_H1_DEUTSCH # Hard: Deutsch algorithm
]
|