File size: 24,000 Bytes
6ce350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
"""
Dirac Notation & Quantum States Study Tab

A comprehensive educational module covering:
- Dirac (bra-ket) notation fundamentals
- Quantum state representations
- Common quantum states with visualizations
- Gate operations as matrix transformations
- Interactive state vector calculations

Target audience: Both newcomers needing foundations and professionals needing refresher.
"""

import gradio as gr
import numpy as np


def create_state_vector_html(state_name: str, vector: list, description: str) -> str:
    """Create HTML representation of a quantum state with its vector."""
    vector_str = "<br>".join([f"  {v}" for v in vector])
    return f"""
    <div style="
        background: linear-gradient(135deg, #1a1a2e 0%, #16213e 100%);
        border: 1px solid #4fc3f7;
        border-radius: 12px;
        padding: 16px;
        margin: 8px 0;
        font-family: 'Courier New', monospace;
    ">
        <div style="color: #4fc3f7; font-size: 1.3em; margin-bottom: 8px;">
            {state_name}
        </div>
        <div style="color: #e0e0e0; font-size: 1.1em; margin-bottom: 12px;">
            = <span style="color: #7c4dff;">[</span><br>{vector_str}<br><span style="color: #7c4dff;">]</span>
        </div>
        <div style="color: #9e9e9e; font-size: 0.9em; font-style: italic;">
            {description}
        </div>
    </div>
    """


def create_gate_matrix_html(gate_name: str, matrix: list[list], description: str) -> str:
    """Create HTML representation of a gate matrix."""
    rows = []
    for row in matrix:
        row_str = " ".join([f"<span style='min-width: 60px; display: inline-block; text-align: center;'>{v}</span>" for v in row])
        rows.append(f"<div style='margin: 4px 0;'>│ {row_str} │</div>")
    matrix_html = "\n".join(rows)
    
    return f"""
    <div style="
        background: linear-gradient(135deg, #1e3a5f 0%, #0d2137 100%);
        border: 1px solid #ff4081;
        border-radius: 12px;
        padding: 16px;
        margin: 8px 0;
        font-family: 'Courier New', monospace;
    ">
        <div style="color: #ff4081; font-size: 1.2em; margin-bottom: 8px;">
            {gate_name}
        </div>
        <div style="color: #e0e0e0; font-size: 1em;">
            {matrix_html}
        </div>
        <div style="color: #9e9e9e; font-size: 0.85em; font-style: italic; margin-top: 8px;">
            {description}
        </div>
    </div>
    """


def calculate_gate_action(gate_name: str, input_state: str) -> tuple[str, str]:
    """Calculate the result of applying a gate to an input state."""
    # Define states
    states = {
        "|0⟩": np.array([1, 0], dtype=complex),
        "|1⟩": np.array([0, 1], dtype=complex),
        "|+⟩": np.array([1/np.sqrt(2), 1/np.sqrt(2)], dtype=complex),
        "|-⟩": np.array([1/np.sqrt(2), -1/np.sqrt(2)], dtype=complex),
        "|i⟩": np.array([1/np.sqrt(2), 1j/np.sqrt(2)], dtype=complex),
        "|-i⟩": np.array([1/np.sqrt(2), -1j/np.sqrt(2)], dtype=complex),
    }
    
    # Define gates
    gates = {
        "I (Identity)": np.array([[1, 0], [0, 1]], dtype=complex),
        "X (NOT)": np.array([[0, 1], [1, 0]], dtype=complex),
        "Y": np.array([[0, -1j], [1j, 0]], dtype=complex),
        "Z": np.array([[1, 0], [0, -1]], dtype=complex),
        "H (Hadamard)": np.array([[1, 1], [1, -1]], dtype=complex) / np.sqrt(2),
        "S (Phase)": np.array([[1, 0], [0, 1j]], dtype=complex),
        "T (π/8)": np.array([[1, 0], [0, np.exp(1j * np.pi / 4)]], dtype=complex),
    }
    
    if input_state not in states or gate_name not in gates:
        return "Invalid input", ""
    
    input_vec = states[input_state]
    gate_mat = gates[gate_name]
    output_vec = gate_mat @ input_vec
    
    # Format input vector
    def format_complex(c):
        if np.abs(c.imag) < 1e-10:
            if np.abs(c.real - 1) < 1e-10:
                return "1"
            elif np.abs(c.real + 1) < 1e-10:
                return "-1"
            elif np.abs(c.real) < 1e-10:
                return "0"
            elif np.abs(c.real - 1/np.sqrt(2)) < 1e-10:
                return "1/√2"
            elif np.abs(c.real + 1/np.sqrt(2)) < 1e-10:
                return "-1/√2"
            else:
                return f"{c.real:.4f}"
        elif np.abs(c.real) < 1e-10:
            if np.abs(c.imag - 1) < 1e-10:
                return "i"
            elif np.abs(c.imag + 1) < 1e-10:
                return "-i"
            elif np.abs(c.imag - 1/np.sqrt(2)) < 1e-10:
                return "i/√2"
            elif np.abs(c.imag + 1/np.sqrt(2)) < 1e-10:
                return "-i/√2"
            else:
                return f"{c.imag:.4f}i"
        else:
            return f"{c.real:.4f} + {c.imag:.4f}i"
    
    # Try to identify output state
    output_state_name = "Unknown state"
    for name, vec in states.items():
        if np.allclose(output_vec, vec) or np.allclose(output_vec, -vec) or np.allclose(output_vec, 1j*vec) or np.allclose(output_vec, -1j*vec):
            # Check for phase factor
            if np.allclose(output_vec, vec):
                output_state_name = name
            elif np.allclose(output_vec, -vec):
                output_state_name = f"-{name}"
            elif np.allclose(output_vec, 1j*vec):
                output_state_name = f"i{name}"
            elif np.allclose(output_vec, -1j*vec):
                output_state_name = f"-i{name}"
            break
    
    # Create calculation display
    calculation = f"""
    <div style="
        background: linear-gradient(135deg, #1a1a2e 0%, #16213e 100%);
        border: 1px solid #3fb950;
        border-radius: 12px;
        padding: 20px;
        font-family: 'Courier New', monospace;
        color: #e0e0e0;
    ">
        <h3 style="color: #3fb950; margin-top: 0;">Calculation: {gate_name} × {input_state}</h3>
        
        <div style="display: flex; align-items: center; gap: 20px; flex-wrap: wrap; justify-content: center;">
            <div style="text-align: center;">
                <div style="color: #ff4081; margin-bottom: 4px;">Gate Matrix</div>
                <div style="background: #0d1117; padding: 10px; border-radius: 8px;">
                    [{format_complex(gate_mat[0,0])}, {format_complex(gate_mat[0,1])}]<br>
                    [{format_complex(gate_mat[1,0])}, {format_complex(gate_mat[1,1])}]
                </div>
            </div>
            
            <div style="font-size: 1.5em; color: #7c4dff;">×</div>
            
            <div style="text-align: center;">
                <div style="color: #4fc3f7; margin-bottom: 4px;">Input {input_state}</div>
                <div style="background: #0d1117; padding: 10px; border-radius: 8px;">
                    [{format_complex(input_vec[0])}]<br>
                    [{format_complex(input_vec[1])}]
                </div>
            </div>
            
            <div style="font-size: 1.5em; color: #7c4dff;">=</div>
            
            <div style="text-align: center;">
                <div style="color: #3fb950; margin-bottom: 4px;">Output</div>
                <div style="background: #0d1117; padding: 10px; border-radius: 8px; border: 1px solid #3fb950;">
                    [{format_complex(output_vec[0])}]<br>
                    [{format_complex(output_vec[1])}]
                </div>
            </div>
        </div>
        
        <div style="margin-top: 16px; text-align: center;">
            <span style="color: #9e9e9e;">Result: </span>
            <span style="color: #3fb950; font-size: 1.3em;">{output_state_name}</span>
        </div>
        
        <div style="margin-top: 12px; color: #9e9e9e; font-size: 0.9em;">
            Probabilities: |0⟩ = {np.abs(output_vec[0])**2:.4f}, |1⟩ = {np.abs(output_vec[1])**2:.4f}
        </div>
    </div>
    """
    
    return calculation, output_state_name


def add_dirac_notation_study_tab():
    """Create the Dirac Notation & Quantum States study tab."""
    
    with gr.Tab("📐 Dirac Notation"):
        gr.Markdown("""
        <div style="text-align: center; padding: 20px 0;">
            <h1 style="
                font-size: 2em;
                background: linear-gradient(135deg, #4fc3f7 0%, #7c4dff 50%, #ff4081 100%);
                -webkit-background-clip: text;
                -webkit-text-fill-color: transparent;
                margin-bottom: 8px;
            ">📐 Dirac Notation & Quantum States</h1>
            <p style="color: #8b949e; font-size: 1.1em;">
                The mathematical language of quantum mechanics
            </p>
        </div>
        """)
        
        # Introduction Section
        with gr.Accordion("📚 Introduction to Dirac Notation", open=True):
            gr.Markdown(r"""
            ## What is Dirac Notation?
            
            **Dirac notation** (also called **bra-ket notation**) is the standard mathematical notation 
            used in quantum mechanics and quantum computing. Invented by physicist Paul Dirac, it provides 
            a clean and powerful way to represent quantum states and operations.
            
            ### The Basics
            
            | Symbol | Name | Meaning |
            |--------|------|---------|
            | $\vert\psi\rangle$ | **Ket** | A quantum state (column vector) |
            | $\langle\psi\vert$ | **Bra** | The conjugate transpose of a ket (row vector) |
            | $\langle\phi\vert\psi\rangle$ | **Bracket** (Inner Product) | Overlap between two states |
            | $\vert\phi\rangle\langle\psi\vert$ | **Outer Product** | Operator (matrix) |
            
            ### Why Use Dirac Notation?
            
            1. **Abstraction**: Focus on physics without getting lost in matrix details
            2. **Clarity**: Operations like inner products are immediately visible
            3. **Universality**: Standard across quantum mechanics, QFT, and quantum computing
            4. **Elegance**: Complex operations can be written concisely
            
            ---
            
            ### The Computational Basis
            
            In quantum computing, we work with **qubits**. The two fundamental basis states are:
            
            $$\vert 0 \rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \quad \text{and} \quad \vert 1 \rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
            
            Any single-qubit state can be written as a **superposition**:
            
            $$\vert \psi \rangle = \alpha \vert 0 \rangle + \beta \vert 1 \rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$
            
            where $\alpha$ and $\beta$ are **complex amplitudes** satisfying $|\alpha|^2 + |\beta|^2 = 1$ (normalization).
            """)
        
        # Common States Section
        with gr.Accordion("🌟 Common Quantum States", open=True):
            gr.Markdown("""
            ## Important Single-Qubit States
            
            These states appear constantly in quantum computing. Memorize them!
            """)
            
            with gr.Row():
                with gr.Column():
                    gr.HTML(create_state_vector_html(
                        "|0⟩ (Computational Zero)",
                        ["1", "0"],
                        "Ground state. Always measured as 0."
                    ))
                    gr.HTML(create_state_vector_html(
                        "|1⟩ (Computational One)",
                        ["0", "1"],
                        "Excited state. Always measured as 1."
                    ))
                
                with gr.Column():
                    gr.HTML(create_state_vector_html(
                        "|+⟩ (Plus State)",
                        ["1/√2", "1/√2"],
                        "Equal superposition. 50% chance of 0 or 1. Created by H|0⟩."
                    ))
                    gr.HTML(create_state_vector_html(
                        "|-⟩ (Minus State)",
                        ["1/√2", "-1/√2"],
                        "Equal superposition with phase. Created by H|1⟩."
                    ))
            
            with gr.Row():
                with gr.Column():
                    gr.HTML(create_state_vector_html(
                        "|i⟩ (Y+ State)",
                        ["1/√2", "i/√2"],
                        "Circular polarization. On +Y axis of Bloch sphere."
                    ))
                
                with gr.Column():
                    gr.HTML(create_state_vector_html(
                        "|-i⟩ (Y- State)",
                        ["1/√2", "-i/√2"],
                        "Opposite circular polarization. On -Y axis of Bloch sphere."
                    ))
            
            gr.Markdown(r"""
            ### Relationship Between States
            
            | Basis | States | Relationship |
            |-------|--------|--------------|
            | **Z (Computational)** | $\vert 0\rangle$, $\vert 1\rangle$ | Eigenstates of Z gate |
            | **X (Hadamard)** | $\vert +\rangle$, $\vert -\rangle$ | Eigenstates of X gate; $\vert\pm\rangle = \frac{1}{\sqrt{2}}(\vert 0\rangle \pm \vert 1\rangle)$ |
            | **Y (Circular)** | $\vert i\rangle$, $\vert{-i}\rangle$ | Eigenstates of Y gate; $\vert\pm i\rangle = \frac{1}{\sqrt{2}}(\vert 0\rangle \pm i\vert 1\rangle)$ |
            
            > **Key Insight**: The Hadamard gate $H$ converts between Z and X bases: $H\vert 0\rangle = \vert +\rangle$ and $H\vert 1\rangle = \vert -\rangle$
            """)
        
        # Gates as Matrices Section
        with gr.Accordion("⚙️ Gates as Matrix Operations", open=True):
            gr.Markdown("""
            ## Quantum Gates = Unitary Matrices
            
            Every quantum gate is a **unitary matrix** $U$ satisfying $U^†U = I$ (preserves normalization).
            Applying a gate to a state is matrix-vector multiplication: $\vert\psi'\rangle = U\vert\psi\rangle$
            """)
            
            with gr.Row():
                with gr.Column():
                    gr.HTML(create_gate_matrix_html(
                        "I (Identity)",
                        [["1", "0"], ["0", "1"]],
                        "Does nothing. |ψ⟩ → |ψ⟩"
                    ))
                    gr.HTML(create_gate_matrix_html(
                        "X (Pauli-X / NOT)",
                        [["0", "1"], ["1", "0"]],
                        "Bit flip. |0⟩ ↔ |1⟩. Rotation by π around X-axis."
                    ))
                    gr.HTML(create_gate_matrix_html(
                        "Y (Pauli-Y)",
                        [["0", "-i"], ["i", "0"]],
                        "Bit + phase flip. Rotation by π around Y-axis."
                    ))
                
                with gr.Column():
                    gr.HTML(create_gate_matrix_html(
                        "Z (Pauli-Z)",
                        [["1", "0"], ["0", "-1"]],
                        "Phase flip. |1⟩ → -|1⟩. Rotation by π around Z-axis."
                    ))
                    gr.HTML(create_gate_matrix_html(
                        "H (Hadamard)",
                        [["1/√2", "1/√2"], ["1/√2", "-1/√2"]],
                        "Creates superposition. Rotation by π around (X+Z)/√2."
                    ))
                    gr.HTML(create_gate_matrix_html(
                        "S (Phase Gate)",
                        [["1", "0"], ["0", "i"]],
                        "π/2 phase on |1⟩. S² = Z."
                    ))
            
            gr.Markdown(r"""
            ### Key Relationships
            
            - **Pauli Gates**: $X^2 = Y^2 = Z^2 = I$ (self-inverse)
            - **Hadamard**: $H^2 = I$ (self-inverse), $HXH = Z$, $HZH = X$
            - **Phase Gates**: $S^2 = Z$, $T^2 = S$, $T^4 = Z$
            - **Composition**: $XYZ = iI$ (up to global phase)
            """)
        
        # Interactive Calculator
        with gr.Accordion("🧮 Interactive Gate Calculator", open=True):
            gr.Markdown("""
            ## Try It Yourself!
            
            Select a gate and an input state to see the matrix multiplication in action.
            """)
            
            with gr.Row():
                gate_select = gr.Dropdown(
                    choices=["I (Identity)", "X (NOT)", "Y", "Z", "H (Hadamard)", "S (Phase)", "T (π/8)"],
                    value="H (Hadamard)",
                    label="Select Gate"
                )
                state_select = gr.Dropdown(
                    choices=["|0⟩", "|1⟩", "|+⟩", "|-⟩", "|i⟩", "|-i⟩"],
                    value="|0⟩",
                    label="Select Input State"
                )
                calc_btn = gr.Button("Calculate", variant="primary")
            
            calculation_output = gr.HTML(label="Calculation Result")
            result_state = gr.Textbox(label="Output State", interactive=False)
            
            calc_btn.click(
                fn=calculate_gate_action,
                inputs=[gate_select, state_select],
                outputs=[calculation_output, result_state]
            )
            
            # Auto-calculate on selection change
            gate_select.change(
                fn=calculate_gate_action,
                inputs=[gate_select, state_select],
                outputs=[calculation_output, result_state]
            )
            state_select.change(
                fn=calculate_gate_action,
                inputs=[gate_select, state_select],
                outputs=[calculation_output, result_state]
            )
        
        # Inner Products Section
        with gr.Accordion("📏 Inner Products & Measurement", open=False):
            gr.Markdown(r"""
            ## The Inner Product (Bracket)
            
            The **inner product** $\langle\phi|\psi\rangle$ measures the "overlap" between two quantum states.
            
            $$\langle\phi|\psi\rangle = \begin{pmatrix} \phi_0^* & \phi_1^* \end{pmatrix} \begin{pmatrix} \psi_0 \\ \psi_1 \end{pmatrix} = \phi_0^*\psi_0 + \phi_1^*\psi_1$$
            
            ### Key Properties
            
            | Inner Product | Value | Meaning |
            |--------------|-------|---------|
            | $\langle\psi\vert\psi\rangle$ | 1 | States are normalized |
            | $\langle 0\vert 1\rangle$ | 0 | Orthogonal (distinguishable) |
            | $\langle +\vert 0\rangle$ | $\frac{1}{\sqrt{2}}$ | Partial overlap |
            | $\vert\langle\phi\vert\psi\rangle\vert^2$ | Probability | Measurement probability |
            
            ### Connection to Measurement
            
            When measuring state $|\psi\rangle$ in the computational basis:
            
            - **Probability of getting 0**: $|\langle 0|\psi\rangle|^2 = |\alpha|^2$
            - **Probability of getting 1**: $|\langle 1|\psi\rangle|^2 = |\beta|^2$
            
            This is the **Born Rule** - the foundation of quantum measurement.
            
            ### Examples
            
            For state $|+\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$:
            
            $$P(0) = |\langle 0|+\rangle|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$
            $$P(1) = |\langle 1|+\rangle|^2 = \left|\frac{1}{\sqrt{2}}\right|^2 = \frac{1}{2}$$
            
            Equal superposition → 50/50 measurement outcomes!
            """)
        
        # Multi-qubit States Section
        with gr.Accordion("🔗 Multi-Qubit States & Tensor Products", open=False):
            gr.Markdown(r"""
            ## Combining Qubits: The Tensor Product
            
            When we have multiple qubits, we combine their state spaces using the **tensor product** (⊗).
            
            ### Two-Qubit Computational Basis
            
            $$|00\rangle = |0\rangle \otimes |0\rangle = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad
            |01\rangle = |0\rangle \otimes |1\rangle = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$
            
            $$|10\rangle = |1\rangle \otimes |0\rangle = \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \quad
            |11\rangle = |1\rangle \otimes |1\rangle = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$
            
            ### Tensor Product Formula
            
            For $|a\rangle = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix}$ and $|b\rangle = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix}$:
            
            $$|a\rangle \otimes |b\rangle = \begin{pmatrix} a_0 b_0 \\ a_0 b_1 \\ a_1 b_0 \\ a_1 b_1 \end{pmatrix}$$
            
            ### Important: Entanglement
            
            Some states **cannot** be written as tensor products. These are **entangled states**:
            
            $$|\Phi^+\rangle = \frac{1}{\sqrt{2}}(|00\rangle + |11\rangle) \neq |a\rangle \otimes |b\rangle$$
            
            This Bell state exhibits quantum correlations that have no classical analog!
            
            ### General n-Qubit State
            
            An n-qubit system has $2^n$ basis states and requires $2^n$ complex amplitudes:
            
            $$|\psi\rangle = \sum_{i=0}^{2^n-1} \alpha_i |i\rangle$$
            
            | Qubits | Basis States | Amplitudes |
            |--------|--------------|------------|
            | 1 | 2 | 2 |
            | 2 | 4 | 4 |
            | 3 | 8 | 8 |
            | 10 | 1,024 | 1,024 |
            | 50 | ~10^15 | ~10^15 |
            
            > **This exponential scaling is why quantum computers are powerful** - and why simulating them classically is hard!
            """)
        
        # Professional Notes Section
        with gr.Accordion("🎓 Professional Notes", open=False):
            gr.Markdown(r"""
            ## Advanced Concepts for Practitioners
            
            ### Density Matrices
            
            For mixed states (statistical ensembles), we use **density matrices**:
            
            $$\rho = \sum_i p_i |\psi_i\rangle\langle\psi_i|$$
            
            Properties:
            - $\text{Tr}(\rho) = 1$ (normalized)
            - $\rho^\dagger = \rho$ (Hermitian)
            - $\rho \geq 0$ (positive semidefinite)
            - $\text{Tr}(\rho^2) = 1$ for pure states, $< 1$ for mixed
            
            ### Bloch Sphere Representation
            
            Any single-qubit state can be written as:
            
            $$|\psi\rangle = \cos\frac{\theta}{2}|0\rangle + e^{i\phi}\sin\frac{\theta}{2}|1\rangle$$
            
            This maps to a point on the Bloch sphere at $(\theta, \phi)$.
            
            For density matrices:
            $$\rho = \frac{1}{2}(I + \vec{r} \cdot \vec{\sigma})$$
            
            where $\vec{r}$ is the Bloch vector and $\vec{\sigma} = (X, Y, Z)$ are Pauli matrices.
            
            ### Operator Notation
            
            - **Projectors**: $P_0 = |0\rangle\langle 0|$, $P_1 = |1\rangle\langle 1|$
            - **Completeness**: $|0\rangle\langle 0| + |1\rangle\langle 1| = I$
            - **Measurement**: State after measuring 0 is $\frac{P_0|\psi\rangle}{\sqrt{\langle\psi|P_0|\psi\rangle}}$
            
            ### Commutators
            
            The commutator $[A, B] = AB - BA$ is crucial:
            
            - $[X, Y] = 2iZ$ (cyclic)
            - $[H, X] \neq 0$ (don't commute)
            - Gates commute ⟺ can be reordered ⟺ no interference
            
            ### Useful Identities
            
            - $e^{i\theta X} = \cos\theta \cdot I + i\sin\theta \cdot X$ (Euler formula for Paulis)
            - $HZH = X$, $HXH = Z$ (basis change)
            - $(A \otimes B)(C \otimes D) = (AC) \otimes (BD)$ (tensor product of operators)
            """)


# Export the function
__all__ = ['add_dirac_notation_study_tab']