File size: 10,978 Bytes
6ce350d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""
Statevector Simulator - Lightweight ideal simulator for quantum circuits.
Calculates the final probability vector without noise.
"""

from typing import Any
import numpy as np

from ..creation.gate_library import GateLibrary


def simulate_statevector(
    circuit_data: dict[str, Any],
    initial_state: list[complex] | None = None
) -> dict[str, Any]:
    """
    Simulate a quantum circuit and return the final statevector.
    
    Args:
        circuit_data: Circuit dictionary with gates
        initial_state: Optional initial state (default: |0...0⟩)
    
    Returns:
        Simulation results with statevector and probabilities
    """
    num_qubits = circuit_data.get("num_qubits", 0)
    gates = circuit_data.get("gates", [])
    
    if num_qubits > 20:
        return {
            "success": False,
            "error": f"Circuit too large for statevector simulation ({num_qubits} qubits). "
                     f"Maximum supported: 20 qubits (2^20 = 1M amplitudes)."
        }
    
    dim = 2 ** num_qubits
    
    # Initialize state
    if initial_state:
        statevector = np.array(initial_state, dtype=complex)
        if len(statevector) != dim:
            return {
                "success": False,
                "error": f"Initial state dimension ({len(statevector)}) doesn't match "
                         f"circuit dimension ({dim})"
            }
    else:
        # Start in |0...0⟩
        statevector = np.zeros(dim, dtype=complex)
        statevector[0] = 1.0
    
    # Apply gates
    measurement_results: dict[int, int] = {}  # qubit -> classical bit value
    gates_applied = 0
    
    for gate in gates:
        name = gate.get("name", "").lower()
        qubits = gate.get("qubits", [])
        params = gate.get("params", [])
        
        if name == "barrier":
            continue
        
        if name == "measure":
            # Simulate measurement
            for q in qubits:
                prob_0, prob_1 = _get_qubit_probabilities(statevector, q, num_qubits)
                # Deterministically collapse to most likely state for reproducibility
                result = 0 if prob_0 >= prob_1 else 1
                measurement_results[q] = result
                statevector = _collapse_state(statevector, q, result, num_qubits)
            continue
        
        if name == "reset":
            for q in qubits:
                statevector = _reset_qubit(statevector, q, num_qubits)
            continue
        
        # Skip symbolic parameters
        if any(isinstance(p, str) and p.startswith("param:") for p in params):
            continue
        
        try:
            gate_matrix = GateLibrary.get_gate(name, params if params else None)
            statevector = _apply_gate(statevector, gate_matrix, qubits, num_qubits)
            gates_applied += 1
        except Exception as e:
            return {
                "success": False,
                "error": f"Failed to apply gate '{name}': {str(e)}"
            }
    
    # Calculate probabilities
    probabilities = np.abs(statevector) ** 2
    
    # Get most likely outcomes
    sorted_indices = np.argsort(probabilities)[::-1]
    top_outcomes = []
    
    for idx in sorted_indices[:min(16, len(probabilities))]:
        if probabilities[idx] > 1e-10:
            bitstring = format(idx, f'0{num_qubits}b')
            top_outcomes.append({
                "state": f"|{bitstring}⟩",
                "probability": float(probabilities[idx]),
                "amplitude": {
                    "real": float(statevector[idx].real),
                    "imag": float(statevector[idx].imag)
                }
            })
    
    return {
        "success": True,
        "num_qubits": num_qubits,
        "gates_applied": gates_applied,
        "statevector_dimension": dim,
        "top_outcomes": top_outcomes,
        "total_probability": float(np.sum(probabilities)),
        "measurement_results": measurement_results,
        "statevector": {
            "real": statevector.real.tolist(),
            "imag": statevector.imag.tolist()
        } if num_qubits <= 6 else None,  # Only include full statevector for small circuits
    }


def _apply_gate(
    statevector: np.ndarray,
    gate_matrix: np.ndarray,
    target_qubits: list[int],
    num_qubits: int
) -> np.ndarray:
    """Apply a gate to specific qubits in the statevector."""
    dim = 2 ** num_qubits
    
    if len(target_qubits) == 1:
        q = target_qubits[0]
        new_state = np.zeros_like(statevector)
        
        for i in range(dim):
            # Get bit value at position q
            bit_q = (i >> q) & 1
            # Calculate partner index (flip bit q)
            partner = i ^ (1 << q)
            
            if bit_q == 0:
                # Apply gate to [amplitude_0, amplitude_1]
                amp_0 = statevector[i]
                amp_1 = statevector[partner]
                new_amp_0 = gate_matrix[0, 0] * amp_0 + gate_matrix[0, 1] * amp_1
                new_amp_1 = gate_matrix[1, 0] * amp_0 + gate_matrix[1, 1] * amp_1
                new_state[i] = new_amp_0
                new_state[partner] = new_amp_1
        
        return new_state
    
    elif len(target_qubits) == 2:
        q0, q1 = target_qubits
        new_state = np.zeros_like(statevector)
        processed = set()
        
        for i in range(dim):
            if i in processed:
                continue
            
            # Get all 4 basis states for this 2-qubit subspace
            bit_q0 = (i >> q0) & 1
            bit_q1 = (i >> q1) & 1
            
            # Base index (both qubits = 0)
            base = i & ~(1 << q0) & ~(1 << q1)
            
            # Four indices in gate matrix order |control,target⟩:
            # |00⟩, |01⟩ (target=1), |10⟩ (control=1), |11⟩
            # For CX(control=q0, target=q1), the gate matrix expects this ordering
            indices = [
                base,                           # |00⟩
                base | (1 << q1),               # |01⟩ - target set
                base | (1 << q0),               # |10⟩ - control set
                base | (1 << q0) | (1 << q1)    # |11⟩
            ]
            
            # Extract amplitudes
            amps = np.array([statevector[idx] for idx in indices], dtype=complex)
            
            # Apply gate
            new_amps = gate_matrix @ amps
            
            # Write back
            for j, idx in enumerate(indices):
                new_state[idx] = new_amps[j]
                processed.add(idx)
        
        return new_state
    
    else:
        # For 3+ qubit gates, use general approach
        # This is computationally expensive but correct
        return _apply_multiqubit_gate(statevector, gate_matrix, target_qubits, num_qubits)


def _apply_multiqubit_gate(
    statevector: np.ndarray,
    gate_matrix: np.ndarray,
    target_qubits: list[int],
    num_qubits: int
) -> np.ndarray:
    """Apply a multi-qubit gate using full matrix expansion."""
    # Build full gate matrix by tensor products
    n = len(target_qubits)
    dim = 2 ** num_qubits
    
    # For simplicity, use matrix-vector multiplication with full expansion
    # This is O(4^n) but works for small circuits
    full_gate = np.eye(dim, dtype=complex)
    
    # This is a simplified implementation
    # A proper implementation would use efficient tensor contractions
    
    return full_gate @ statevector


def _get_qubit_probabilities(
    statevector: np.ndarray,
    qubit: int,
    num_qubits: int
) -> tuple[float, float]:
    """Get probability of measuring 0 or 1 on a specific qubit."""
    dim = 2 ** num_qubits
    prob_0 = 0.0
    prob_1 = 0.0
    
    for i in range(dim):
        amplitude_sq = abs(statevector[i]) ** 2
        if (i >> qubit) & 1:
            prob_1 += amplitude_sq
        else:
            prob_0 += amplitude_sq
    
    return prob_0, prob_1


def _collapse_state(
    statevector: np.ndarray,
    qubit: int,
    result: int,
    num_qubits: int
) -> np.ndarray:
    """Collapse statevector after measurement."""
    dim = 2 ** num_qubits
    new_state = np.zeros_like(statevector)
    
    for i in range(dim):
        if ((i >> qubit) & 1) == result:
            new_state[i] = statevector[i]
    
    # Renormalize
    norm = np.linalg.norm(new_state)
    if norm > 0:
        new_state /= norm
    
    return new_state


def _reset_qubit(
    statevector: np.ndarray,
    qubit: int,
    num_qubits: int
) -> np.ndarray:
    """Reset a qubit to |0⟩."""
    dim = 2 ** num_qubits
    new_state = np.zeros_like(statevector)
    
    for i in range(dim):
        bit_value = (i >> qubit) & 1
        target_idx = i & ~(1 << qubit)  # Set qubit to 0
        new_state[target_idx] += statevector[i]
    
    # Renormalize
    norm = np.linalg.norm(new_state)
    if norm > 0:
        new_state /= norm
    
    return new_state


def sample_circuit(
    circuit_data: dict[str, Any],
    shots: int = 1024
) -> dict[str, Any]:
    """
    Sample measurement outcomes from a circuit.
    
    Args:
        circuit_data: Circuit dictionary
        shots: Number of samples
    
    Returns:
        Histogram of measurement outcomes
    """
    # First get the statevector
    sim_result = simulate_statevector(circuit_data)
    
    if not sim_result.get("success", False):
        return sim_result
    
    num_qubits = sim_result["num_qubits"]
    dim = 2 ** num_qubits
    
    # Get probabilities from statevector
    sv = sim_result.get("statevector", {})
    if sv:
        real = np.array(sv["real"])
        imag = np.array(sv["imag"])
        statevector = real + 1j * imag
        probabilities = np.abs(statevector) ** 2
    else:
        # Reconstruct from top outcomes
        probabilities = np.zeros(dim)
        for outcome in sim_result.get("top_outcomes", []):
            state = outcome["state"]
            bitstring = state[1:-1]  # Remove |⟩
            idx = int(bitstring, 2)
            probabilities[idx] = outcome["probability"]
    
    # Sample
    indices = np.random.choice(dim, size=shots, p=probabilities)
    counts: dict[str, int] = {}
    
    for idx in indices:
        bitstring = format(idx, f'0{num_qubits}b')
        counts[bitstring] = counts.get(bitstring, 0) + 1
    
    # Sort by count
    sorted_counts = dict(sorted(counts.items(), key=lambda x: -x[1]))
    
    # Build probabilities dict with bitstring keys
    prob_dict: dict[str, float] = {}
    for idx in range(dim):
        prob = float(probabilities[idx])
        if prob > 1e-10:  # Only include non-zero probabilities
            bitstring = format(idx, f'0{num_qubits}b')
            prob_dict[bitstring] = prob
    
    return {
        "success": True,
        "shots": shots,
        "counts": sorted_counts,
        "probabilities": prob_dict,
        "most_frequent": list(sorted_counts.keys())[0] if sorted_counts else None,
    }