QuantumArchitect-MCP / frontend /tabs /tab_getting_started.py
Deminiko
Initial commit: QuantumArchitect-MCP quantum circuit MCP server with Gradio UI
6ce350d
"""
Getting Started Tab for QuantumArchitect-MCP
"""
import gradio as gr
def add_getting_started_tab():
"""Add the Getting Started tab to the Gradio interface."""
with gr.TabItem("🚀 Getting Started", id="getting-started"):
gr.Markdown("""
<div style="max-width: 900px; margin: 0 auto;">
# 🚀 Getting Started with Quantum Circuits
Welcome to **QuantumArchitect-MCP**! This guide will help you understand quantum computing
basics and how to use this tool effectively.
---
## 🎯 Quick Start (5 Minutes)
### Step 1: Understand What a Qubit Is
A **qubit** (quantum bit) is the basic unit of quantum information. Unlike classical bits (0 or 1),
qubits can exist in **superposition** - being both 0 and 1 simultaneously until measured.
```
Classical bit: 0 OR 1
Qubit: α|0⟩ + β|1⟩ (superposition of both states)
```
### Step 2: Learn the Basic Gates
| Gate | What it Does | Analogy |
|------|--------------|---------|
| **H** (Hadamard) | Creates superposition | Flipping a coin in the air |
| **X** (NOT) | Flips 0↔1 | Light switch |
| **CX** (CNOT) | Controlled NOT | "If A is 1, flip B" |
| **Measure** | Collapses to 0 or 1 | Catching the coin |
### Step 3: Build Your First Circuit
1. Go to the **⚛️ Circuit Builder** tab
2. Set **Qubit 1** to `0` in the left panel
3. Click the **H** button to add a Hadamard gate
4. Click **▶️ Simulate** to see the results
**Expected Result:** You'll see 50% probability for |0⟩ and 50% for |1⟩ (superposition!)
---
## 📚 Skill Levels
</div>
""")
with gr.Tabs():
with gr.TabItem("🌱 Beginner"):
gr.Markdown("""
### Beginner Concepts
**What You'll Learn:**
- Qubits and superposition
- Basic single-qubit gates (H, X, Y, Z)
- Measurement
- Simple 2-qubit entanglement (Bell State)
**Recommended First Circuits:**
| Circuit | Description | Try This |
|---------|-------------|----------|
| **Single Hadamard** | H gate on qubit 0 | Shows 50/50 superposition |
| **Bell State** | H on q0, then CX on q0→q1 | Creates entanglement |
| **NOT Gate** | X gate on qubit 0 | Flips |0⟩ to |1⟩ |
**Key Concepts:**
🔹 **Superposition**: A qubit can be in multiple states at once
🔹 **Measurement**: Observing a qubit forces it to choose 0 or 1
🔹 **Entanglement**: Two qubits become correlated (Bell State)
**Practice Exercise:**
1. Go to Circuit Builder
2. Add H gate to qubit 0
3. Add CX gate with control=0, target=1
4. Simulate and observe that |00⟩ and |11⟩ each have 50% probability
""")
with gr.TabItem("🔬 Intermediate"):
gr.Markdown("""
### Intermediate Concepts
**What You'll Learn:**
- Phase gates (S, T, Z)
- Rotation gates (Rx, Ry, Rz)
- Multi-qubit circuits
- GHZ and W states
- Quantum Fourier Transform basics
**Phase Gates Explained:**
| Gate | Matrix | Effect |
|------|--------|--------|
| **Z** | diag(1, -1) | Flips phase of |1⟩ |
| **S** | diag(1, i) | 90° phase rotation |
| **T** | diag(1, e^(iπ/4)) | 45° phase rotation |
**Rotation Gates:**
- **Rx(θ)**: Rotates around X-axis by angle θ
- **Ry(θ)**: Rotates around Y-axis by angle θ
- **Rz(θ)**: Rotates around Z-axis by angle θ
**Try These Circuits:**
1. **GHZ State** (3 qubits): H(0), CX(0,1), CX(1,2)
- Creates |000⟩ + |111⟩ superposition
2. **Phase Kickback**: H(0), H(1), CZ(0,1), H(0), H(1)
- Demonstrates phase relationships
3. **Rotation Sequence**: Rx(π/2), Ry(π/2), Rz(π/2)
- Explore the Bloch sphere
""")
with gr.TabItem("🎓 Advanced"):
gr.Markdown("""
### Advanced Concepts
**What You'll Learn:**
- Quantum Fourier Transform (QFT)
- Grover's Search Algorithm
- Variational Quantum Eigensolver (VQE)
- QAOA for optimization
- Error mitigation strategies
- Hardware-aware circuit design
**Quantum Fourier Transform:**
```
QFT transforms computational basis states to frequency domain:
|j⟩ → (1/√N) Σₖ e^(2πijk/N) |k⟩
```
**Grover's Algorithm:**
- Searches unsorted database in O(√N) time
- Uses oracle + diffusion operator
- Optimal iterations: ≈ π/4 × √N
**VQE (Variational Quantum Eigensolver):**
- Hybrid classical-quantum algorithm
- Finds ground state energy of molecules
- Uses parameterized circuits (ansatz)
**Hardware Considerations:**
- Gate fidelity and error rates
- Qubit connectivity constraints
- T1/T2 coherence times
- Circuit depth limitations
**Use the Templates tab** to generate these circuits automatically!
""")
with gr.TabItem("🔧 Professional"):
gr.Markdown("""
### Professional & Research Topics
**Topics Covered:**
- Custom gate decomposition
- Noise modeling and simulation
- Quantum error correction codes
- Transpilation strategies
- Hardware backend optimization
**Circuit Optimization Techniques:**
| Technique | Description | Benefit |
|-----------|-------------|---------|
| Gate cancellation | Remove adjacent inverse gates | Reduces depth |
| Commutation | Reorder commuting gates | Better scheduling |
| Decomposition | Break complex gates into native set | Hardware compatibility |
| Routing | Add SWAPs for connectivity | Executable circuits |
**Using the MCP API:**
This app exposes all functionality via MCP (Model Context Protocol) endpoints.
AI agents can use these tools programmatically:
```python
# Example MCP tool calls
mcp_create_circuit("bell_state", 2, "{}")
mcp_validate_circuit(qasm, "ibm_brisbane", True, True)
mcp_simulate(qasm, 1024, True, "depolarizing")
mcp_score_circuit(qasm, "ibm_brisbane")
```
**Research Applications:**
- Quantum chemistry simulations
- Optimization problems (MaxCut, TSP)
- Quantum machine learning
- Cryptographic protocols
""")