Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| import matplotlib.pyplot as plt | |
| import numpy as np | |
| import pandas as pd | |
| from sklearn.linear_model import LinearRegression | |
| from sklearn.preprocessing import PolynomialFeatures | |
| st.set_option('deprecation.showPyplotGlobalUse', False) | |
| st.title('Polynomial Regression Prediction App') | |
| default_X = "0, 1, 2, -1, -2" | |
| default_Y = "1, 6, 33, 0, 9" | |
| X_input = st.text_area('Enter the X values (comma-separated):', value=default_X) | |
| Y_input = st.text_area('Enter the Y values (comma-separated):', value=default_Y) | |
| X = np.array([float(x) for x in X_input.split(',')]).reshape(-1, 1) | |
| Y = np.array([float(y) for y in Y_input.split(',')]) | |
| degree = len(X)-1 | |
| poly = PolynomialFeatures(degree=degree) | |
| X_poly = poly.fit_transform(X) | |
| regressor = LinearRegression() | |
| regressor.fit(X_poly, Y) | |
| x_values = np.linspace(min(X), max(X), 100).reshape(-1, 1) | |
| x_values_poly = poly.transform(x_values) | |
| y_predicted = regressor.predict(x_values_poly) | |
| st.write("### Polynomial Regression Prediction Plot") | |
| plt.scatter(X, Y, color='red', label='Data') | |
| plt.plot(x_values, y_predicted, color='blue', label='Predicted') | |
| plt.title(f'Polynomial Regression Prediction (Degree {degree})') | |
| plt.xlabel('X') | |
| plt.ylabel('Y') | |
| plt.legend() | |
| st.pyplot() | |
| y_predicted = regressor.predict(X_poly) | |
| data = {'X': X.ravel(), 'Y': Y, 'Y_pred': y_predicted} | |
| df = pd.DataFrame(data) | |
| st.write("### Dataframe with Predicted Values") | |
| st.write(df) | |
| coefficients = regressor.coef_ | |
| coeff_data = {'Feature': [f'X^{i}' for i in range(1, degree + 1)], 'Coefficient': coefficients[1:]} | |
| coeff_df = pd.DataFrame(coeff_data) | |
| st.write("### Coefficients of Polynomial Terms") | |
| st.write(coeff_df) | |
| coefficients = [i for i in regressor.coef_] | |
| formatted_coefficients = [f'{coeff:.2e}' for coeff in coefficients if coeff != 0] | |
| terms = [f'{formatted_coefficients[i]}X^{i+1}' for i in range(len(formatted_coefficients))] | |
| formatted_intercept = f'{regressor.intercept_:.2e}' | |
| formatted_equation = ' + '.join(terms) | |
| if formatted_equation: | |
| formatted_equation = formatted_intercept + ' + ' + formatted_equation | |
| else: | |
| formatted_equation = formatted_intercept | |
| latex_equation = f''' | |
| Our Equation: {formatted_equation} | |
| ''' | |
| st.write("### Polynomial Equation") | |
| st.latex(latex_equation) | |
| def calculate_polynomial_value(coefficients, X, intercept): | |
| result = sum(coeff * (X ** i) for i, coeff in enumerate(coefficients)) | |
| return result + intercept | |
| X_to_calculate = st.number_input('Enter the X value for prediction:') | |
| result = calculate_polynomial_value(coefficients, X_to_calculate, regressor.intercept_) | |
| st.write(f"Predicted Y value at X = {X_to_calculate:.2f} is {result:.2f}") | |