Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from sklearn.linear_model import LinearRegression
|
| 6 |
+
from sklearn.preprocessing import PolynomialFeatures
|
| 7 |
+
|
| 8 |
+
st.set_option('deprecation.showPyplotGlobalUse', False)
|
| 9 |
+
|
| 10 |
+
st.title('Polynomial Regression Prediction App')
|
| 11 |
+
|
| 12 |
+
default_X = "0, 1, 2, -1, -2"
|
| 13 |
+
default_Y = "1, 6, 33, 0, 9"
|
| 14 |
+
|
| 15 |
+
X_input = st.text_area('Enter the X values (comma-separated):', value=default_X)
|
| 16 |
+
Y_input = st.text_area('Enter the Y values (comma-separated):', value=default_Y)
|
| 17 |
+
|
| 18 |
+
X = np.array([float(x) for x in X_input.split(',')]).reshape(-1, 1)
|
| 19 |
+
Y = np.array([float(y) for y in Y_input.split(',')])
|
| 20 |
+
|
| 21 |
+
degree = len(X)-1
|
| 22 |
+
|
| 23 |
+
poly = PolynomialFeatures(degree=degree)
|
| 24 |
+
X_poly = poly.fit_transform(X)
|
| 25 |
+
|
| 26 |
+
regressor = LinearRegression()
|
| 27 |
+
regressor.fit(X_poly, Y)
|
| 28 |
+
|
| 29 |
+
x_values = np.linspace(min(X), max(X), 100).reshape(-1, 1)
|
| 30 |
+
x_values_poly = poly.transform(x_values)
|
| 31 |
+
y_predicted = regressor.predict(x_values_poly)
|
| 32 |
+
|
| 33 |
+
st.write("### Polynomial Regression Prediction Plot")
|
| 34 |
+
plt.scatter(X, Y, color='red', label='Data')
|
| 35 |
+
plt.plot(x_values, y_predicted, color='blue', label='Predicted')
|
| 36 |
+
plt.title(f'Polynomial Regression Prediction (Degree {degree})')
|
| 37 |
+
plt.xlabel('X')
|
| 38 |
+
plt.ylabel('Y')
|
| 39 |
+
plt.legend()
|
| 40 |
+
st.pyplot()
|
| 41 |
+
|
| 42 |
+
y_predicted = regressor.predict(X_poly)
|
| 43 |
+
data = {'X': X.ravel(), 'Y': Y, 'Y_pred': y_predicted}
|
| 44 |
+
df = pd.DataFrame(data)
|
| 45 |
+
st.write("### Dataframe with Predicted Values")
|
| 46 |
+
st.write(df)
|
| 47 |
+
|
| 48 |
+
coefficients = regressor.coef_
|
| 49 |
+
coeff_data = {'Feature': [f'X^{i}' for i in range(1, degree + 1)], 'Coefficient': coefficients[1:]}
|
| 50 |
+
coeff_df = pd.DataFrame(coeff_data)
|
| 51 |
+
st.write("### Coefficients of Polynomial Terms")
|
| 52 |
+
st.write(coeff_df)
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
coefficients = [i for i in regressor.coef_]
|
| 57 |
+
terms = [f'{coeff:.3f}X^{i}' for i, coeff in enumerate(coefficients) if coeff != 0]
|
| 58 |
+
|
| 59 |
+
latex_equation = r'''
|
| 60 |
+
Our Equation: {:.3f} + {}
|
| 61 |
+
'''.format(regressor.intercept_, ' + '.join(terms))
|
| 62 |
+
|
| 63 |
+
st.write("### Polynomial Equation")
|
| 64 |
+
st.latex(latex_equation)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def calculate_polynomial_value(coefficients, X, intercept):
|
| 68 |
+
result = sum(coeff * (X ** i) for i, coeff in enumerate(coefficients))
|
| 69 |
+
return result + intercept
|
| 70 |
+
|
| 71 |
+
X_to_calculate = st.number_input('Enter the X value for prediction:')
|
| 72 |
+
result = calculate_polynomial_value(coefficients, X_to_calculate, regressor.intercept_)
|
| 73 |
+
st.write(f"Predicted Y value at X = {X_to_calculate:.2f} is {result:.2f}")
|