Spaces:
Sleeping
Sleeping
| # -*- coding: utf-8 -*- | |
| # @Time : 2021/1/4 | |
| # @Author : Lart Pang | |
| # @GitHub : https://github.com/lartpang/PySODMetrics | |
| import numpy as np | |
| from scipy.ndimage import convolve | |
| from scipy.ndimage import distance_transform_edt as bwdist | |
| import cv2 | |
| from PIL import Image | |
| _EPS = 1e-16 | |
| _TYPE = np.float64 | |
| def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple: | |
| """ | |
| A numpy-based function for preparing ``pred`` and ``gt``. | |
| - for ``pred``, it looks like ``mapminmax(im2double(...))`` of matlab; | |
| - ``gt`` will be binarized by 128. | |
| :param pred: prediction | |
| :param gt: mask | |
| :return: pred, gt | |
| """ | |
| gt = gt > 128 | |
| pred = pred / 255 | |
| if pred.max() != pred.min(): | |
| pred = (pred - pred.min()) / (pred.max() - pred.min()) | |
| return pred, gt | |
| def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float: | |
| """ | |
| Return an adaptive threshold, which is equal to twice the mean of ``matrix``. | |
| :param matrix: a data array | |
| :param max_value: the upper limit of the threshold | |
| :return: min(2 * matrix.mean(), max_value) | |
| """ | |
| return min(2 * matrix.mean(), max_value) | |
| class IoU(object): | |
| def __init__(self): | |
| self.ious = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| ious = self.cal_iou(pred=pred, gt=gt) | |
| self.ious.append(ious) | |
| def cal_iou(self, pred, gt): | |
| pred = (pred * 255).astype(np.uint8) | |
| bins = np.linspace(0, 256, 257) | |
| fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive | |
| bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive | |
| fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
| bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
| TPs = fg_w_thrs | |
| Ps = fg_w_thrs + bg_w_thrs # positives | |
| Ps[Ps == 0] = 1 | |
| T = max(np.count_nonzero(gt), 1) | |
| ious = TPs / (T + bg_w_thrs) | |
| return ious | |
| def get_results(self) -> dict: | |
| iou = np.mean(np.array(self.ious, dtype=_TYPE), axis=0) | |
| return dict(iou=dict(curve=iou)) | |
| class BIoU(object): | |
| def __init__(self, dilation_ratio=0.02): | |
| self.bious = [] | |
| self.dilation_ratio = dilation_ratio | |
| def mask_to_boundary(self, mask): | |
| h, w = mask.shape | |
| img_diag = np.sqrt(h ** 2 + w ** 2) | |
| dilation = int(round(self.dilation_ratio * img_diag)) | |
| if dilation < 1: | |
| dilation = 1 | |
| # Pad image so mask truncated by the image border is also considered as boundary. | |
| new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) | |
| kernel = np.ones((3, 3), dtype=np.uint8) | |
| new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) | |
| mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] | |
| # G_d intersects G in the paper. | |
| return mask - mask_erode | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| bious = self.cal_biou(pred=pred, gt=gt) | |
| self.bious.append(bious) | |
| def cal_biou(self, pred, gt): | |
| pred = (pred * 255).astype(np.uint8) | |
| pred = self.mask_to_boundary(pred) | |
| gt = (gt * 255).astype(np.uint8) | |
| gt = self.mask_to_boundary(gt) | |
| gt = gt > 128 | |
| bins = np.linspace(0, 256, 257) | |
| fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive | |
| bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive | |
| fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
| bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
| TPs = fg_w_thrs | |
| Ps = fg_w_thrs + bg_w_thrs # positives | |
| Ps[Ps == 0] = 1 | |
| T = max(np.count_nonzero(gt), 1) | |
| ious = TPs / (T + bg_w_thrs) | |
| return ious | |
| def get_results(self) -> dict: | |
| biou = np.mean(np.array(self.bious, dtype=_TYPE), axis=0) | |
| return dict(biou=dict(curve=biou)) | |
| class TIoU(object): | |
| def __init__(self, dilation_ratio=0.001): | |
| self.tious = [] | |
| self.dilation_ratio = dilation_ratio | |
| def mask_to_boundary(self, mask): | |
| h, w = mask.shape | |
| img_diag = np.sqrt(h ** 2 + w ** 2) | |
| dilation = int(round(self.dilation_ratio * img_diag)) | |
| if dilation < 1: | |
| dilation = 1 | |
| # Pad image so mask truncated by the image border is also considered as boundary. | |
| new_mask = cv2.copyMakeBorder(mask, 1, 1, 1, 1, cv2.BORDER_CONSTANT, value=0) | |
| kernel = np.ones((3, 3), dtype=np.uint8) | |
| new_mask_erode = cv2.erode(new_mask, kernel, iterations=dilation) | |
| mask_erode = new_mask_erode[1 : h + 1, 1 : w + 1] | |
| # G_d intersects G in the paper. | |
| return mask - mask_erode | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| tious = self.cal_tiou(pred=pred, gt=gt) | |
| self.tious.append(tious) | |
| def cal_tiou(self, pred, gt): | |
| pred = (pred * 255).astype(np.uint8) | |
| gt = (gt * 255).astype(np.uint8) | |
| gt = self.mask_to_boundary(gt) | |
| gt = gt > 128 | |
| pred = pred * gt | |
| bins = np.linspace(0, 256, 257) | |
| fg_hist, _ = np.histogram(pred[gt], bins=bins) # ture positive | |
| bg_hist, _ = np.histogram(pred[~gt], bins=bins) # false positive | |
| fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
| bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
| TPs = fg_w_thrs | |
| Ps = fg_w_thrs + bg_w_thrs # positives | |
| Ps[Ps == 0] = 1 | |
| T = max(np.count_nonzero(gt), 1) | |
| ious = TPs / (T + bg_w_thrs) | |
| return ious | |
| def get_results(self) -> dict: | |
| tiou = np.mean(np.array(self.tious, dtype=_TYPE), axis=0) | |
| return dict(tiou=dict(curve=tiou)) | |
| class Fmeasure(object): | |
| def __init__(self, beta: float = 0.3): | |
| """ | |
| F-measure for SOD. | |
| :: | |
| @inproceedings{Fmeasure, | |
| title={Frequency-tuned salient region detection}, | |
| author={Achanta, Radhakrishna and Hemami, Sheila and Estrada, Francisco and S{\"u}sstrunk, Sabine}, | |
| booktitle=CVPR, | |
| number={CONF}, | |
| pages={1597--1604}, | |
| year={2009} | |
| } | |
| :param beta: the weight of the precision | |
| """ | |
| self.beta = beta | |
| self.precisions = [] | |
| self.recalls = [] | |
| self.adaptive_fms = [] | |
| self.changeable_fms = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt) | |
| self.adaptive_fms.append(adaptive_fm) | |
| precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt) | |
| self.precisions.append(precisions) | |
| self.recalls.append(recalls) | |
| self.changeable_fms.append(changeable_fms) | |
| def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the adaptive F-measure. | |
| :return: adaptive_fm | |
| """ | |
| adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) | |
| binary_predcition = pred >= adaptive_threshold | |
| area_intersection = binary_predcition[gt].sum() | |
| if area_intersection == 0: | |
| adaptive_fm = 0 | |
| else: | |
| pre = area_intersection / np.count_nonzero(binary_predcition) | |
| rec = area_intersection / np.count_nonzero(gt) | |
| adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec) | |
| return adaptive_fm | |
| def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple: | |
| """ | |
| Calculate the corresponding precision and recall when the threshold changes from 0 to 255. | |
| These precisions and recalls can be used to obtain the mean F-measure, maximum F-measure, | |
| precision-recall curve and F-measure-threshold curve. | |
| For convenience, ``changeable_fms`` is provided here, which can be used directly to obtain | |
| the mean F-measure, maximum F-measure and F-measure-threshold curve. | |
| :return: precisions, recalls, changeable_fms | |
| """ | |
| pred = (pred * 255).astype(np.uint8) | |
| bins = np.linspace(0, 256, 257) | |
| fg_hist, _ = np.histogram(pred[gt], bins=bins) | |
| bg_hist, _ = np.histogram(pred[~gt], bins=bins) | |
| fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0) | |
| bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0) | |
| TPs = fg_w_thrs | |
| Ps = fg_w_thrs + bg_w_thrs | |
| Ps[Ps == 0] = 1 | |
| T = max(np.count_nonzero(gt), 1) | |
| precisions = TPs / Ps | |
| recalls = TPs / T | |
| numerator = (1 + self.beta) * precisions * recalls | |
| denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls) | |
| changeable_fms = numerator / denominator | |
| return precisions, recalls, changeable_fms | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about F-measure. | |
| :return: dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall)) | |
| """ | |
| adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE)) | |
| changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0) | |
| precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256 | |
| recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256 | |
| return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm), pr=dict(p=precision, r=recall)) | |
| class Mae(object): | |
| def __init__(self): | |
| """ | |
| MAE(mean absolute error) for SOD. | |
| :: | |
| @inproceedings{MAE, | |
| title={Saliency filters: Contrast based filtering for salient region detection}, | |
| author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, | |
| booktitle=CVPR, | |
| pages={733--740}, | |
| year={2012} | |
| } | |
| """ | |
| self.maes = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| mae = self.cal_mae(pred, gt) | |
| self.maes.append(mae) | |
| def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
| """ | |
| Calculate the mean absolute error. | |
| :return: mae | |
| """ | |
| mae = np.mean(np.abs(pred - gt)) | |
| return mae | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about MAE. | |
| :return: dict(mae=mae) | |
| """ | |
| mae = np.mean(np.array(self.maes, _TYPE)) | |
| return dict(mae=mae) | |
| class Mse(object): | |
| def __init__(self): | |
| """ | |
| MAE(mean absolute error) for SOD. | |
| :: | |
| @inproceedings{MAE, | |
| title={Saliency filters: Contrast based filtering for salient region detection}, | |
| author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, | |
| booktitle=CVPR, | |
| pages={733--740}, | |
| year={2012} | |
| } | |
| """ | |
| self.mses = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred, gt) | |
| mse = self.cal_mse(pred, gt) | |
| self.mses.append(mse) | |
| def cal_mse(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
| """ | |
| Calculate the mean absolute error. | |
| :return: mse | |
| """ | |
| mse = np.mean((pred - gt) ** 2) | |
| return mse | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about MSE. | |
| :return: dict(mse=mse) | |
| """ | |
| mse = np.mean(np.array(self.mses, _TYPE)) | |
| return dict(mse=mse) | |
| class Smeasure(object): | |
| def __init__(self, alpha: float = 0.5): | |
| """ | |
| S-measure(Structure-measure) of SOD. | |
| :: | |
| @inproceedings{Smeasure, | |
| title={Structure-measure: A new way to eval foreground maps}, | |
| author={Fan, Deng-Ping and Cheng, Ming-Ming and Liu, Yun and Li, Tao and Borji, Ali}, | |
| booktitle=ICCV, | |
| pages={4548--4557}, | |
| year={2017} | |
| } | |
| :param alpha: the weight for balancing the object score and the region score | |
| """ | |
| self.sms = [] | |
| self.alpha = alpha | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred=pred, gt=gt) | |
| sm = self.cal_sm(pred, gt) | |
| self.sms.append(sm) | |
| def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the S-measure. | |
| :return: s-measure | |
| """ | |
| y = np.mean(gt) | |
| if y == 0: | |
| sm = 1 - np.mean(pred) | |
| elif y == 1: | |
| sm = np.mean(pred) | |
| else: | |
| sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt) | |
| sm = max(0, sm) | |
| return sm | |
| def object(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the object score. | |
| """ | |
| fg = pred * gt | |
| bg = (1 - pred) * (1 - gt) | |
| u = np.mean(gt) | |
| object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt) | |
| return object_score | |
| def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| x = np.mean(pred[gt == 1]) | |
| sigma_x = np.std(pred[gt == 1]) | |
| score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS) | |
| return score | |
| def region(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the region score. | |
| """ | |
| x, y = self.centroid(gt) | |
| part_info = self.divide_with_xy(pred, gt, x, y) | |
| w1, w2, w3, w4 = part_info["weight"] | |
| pred1, pred2, pred3, pred4 = part_info["pred"] | |
| gt1, gt2, gt3, gt4 = part_info["gt"] | |
| score1 = self.ssim(pred1, gt1) | |
| score2 = self.ssim(pred2, gt2) | |
| score3 = self.ssim(pred3, gt3) | |
| score4 = self.ssim(pred4, gt4) | |
| return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4 | |
| def centroid(self, matrix: np.ndarray) -> tuple: | |
| """ | |
| To ensure consistency with the matlab code, one is added to the centroid coordinate, | |
| so there is no need to use the redundant addition operation when dividing the region later, | |
| because the sequence generated by ``1:X`` in matlab will contain ``X``. | |
| :param matrix: a data array | |
| :return: the centroid coordinate | |
| """ | |
| h, w = matrix.shape | |
| if matrix.sum() == 0: | |
| x = np.round(w / 2) | |
| y = np.round(h / 2) | |
| else: | |
| area_object = np.sum(matrix) | |
| row_ids = np.arange(h) | |
| col_ids = np.arange(w) | |
| x = np.round(np.sum(np.sum(matrix, axis=0) * col_ids) / area_object) | |
| y = np.round(np.sum(np.sum(matrix, axis=1) * row_ids) / area_object) | |
| return int(x) + 1, int(y) + 1 | |
| def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x: int, y: int) -> dict: | |
| """ | |
| Use (x,y) to divide the ``pred`` and the ``gt`` into four submatrices, respectively. | |
| """ | |
| h, w = gt.shape | |
| area = h * w | |
| gt_LT = gt[0:y, 0:x] | |
| gt_RT = gt[0:y, x:w] | |
| gt_LB = gt[y:h, 0:x] | |
| gt_RB = gt[y:h, x:w] | |
| pred_LT = pred[0:y, 0:x] | |
| pred_RT = pred[0:y, x:w] | |
| pred_LB = pred[y:h, 0:x] | |
| pred_RB = pred[y:h, x:w] | |
| w1 = x * y / area | |
| w2 = y * (w - x) / area | |
| w3 = (h - y) * x / area | |
| w4 = 1 - w1 - w2 - w3 | |
| return dict( | |
| gt=(gt_LT, gt_RT, gt_LB, gt_RB), | |
| pred=(pred_LT, pred_RT, pred_LB, pred_RB), | |
| weight=(w1, w2, w3, w4), | |
| ) | |
| def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the ssim score. | |
| """ | |
| h, w = pred.shape | |
| N = h * w | |
| x = np.mean(pred) | |
| y = np.mean(gt) | |
| sigma_x = np.sum((pred - x) ** 2) / (N - 1) | |
| sigma_y = np.sum((gt - y) ** 2) / (N - 1) | |
| sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1) | |
| alpha = 4 * x * y * sigma_xy | |
| beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y) | |
| if alpha != 0: | |
| score = alpha / (beta + _EPS) | |
| elif alpha == 0 and beta == 0: | |
| score = 1 | |
| else: | |
| score = 0 | |
| return score | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about S-measure. | |
| :return: dict(sm=sm) | |
| """ | |
| sm = np.mean(np.array(self.sms, dtype=_TYPE)) | |
| return dict(sm=sm) | |
| class Emeasure(object): | |
| def __init__(self): | |
| """ | |
| E-measure(Enhanced-alignment Measure) for SOD. | |
| More details about the implementation can be found in https://www.yuque.com/lart/blog/lwgt38 | |
| :: | |
| @inproceedings{Emeasure, | |
| title="Enhanced-alignment Measure for Binary Foreground Map Evaluation", | |
| author="Deng-Ping {Fan} and Cheng {Gong} and Yang {Cao} and Bo {Ren} and Ming-Ming {Cheng} and Ali {Borji}", | |
| booktitle=IJCAI, | |
| pages="698--704", | |
| year={2018} | |
| } | |
| """ | |
| self.adaptive_ems = [] | |
| self.changeable_ems = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred=pred, gt=gt) | |
| self.gt_fg_numel = np.count_nonzero(gt) | |
| self.gt_size = gt.shape[0] * gt.shape[1] | |
| changeable_ems = self.cal_changeable_em(pred, gt) | |
| self.changeable_ems.append(changeable_ems) | |
| adaptive_em = self.cal_adaptive_em(pred, gt) | |
| self.adaptive_ems.append(adaptive_em) | |
| def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the adaptive E-measure. | |
| :return: adaptive_em | |
| """ | |
| adaptive_threshold = _get_adaptive_threshold(pred, max_value=1) | |
| adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold) | |
| return adaptive_em | |
| def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
| """ | |
| Calculate the changeable E-measure, which can be used to obtain the mean E-measure, | |
| the maximum E-measure and the E-measure-threshold curve. | |
| :return: changeable_ems | |
| """ | |
| changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt) | |
| return changeable_ems | |
| def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float: | |
| """ | |
| Calculate the E-measure corresponding to the specific threshold. | |
| Variable naming rules within the function: | |
| ``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]`` | |
| If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'. | |
| """ | |
| binarized_pred = pred >= threshold | |
| fg_fg_numel = np.count_nonzero(binarized_pred & gt) | |
| fg_bg_numel = np.count_nonzero(binarized_pred & ~gt) | |
| fg___numel = fg_fg_numel + fg_bg_numel | |
| bg___numel = self.gt_size - fg___numel | |
| if self.gt_fg_numel == 0: | |
| enhanced_matrix_sum = bg___numel | |
| elif self.gt_fg_numel == self.gt_size: | |
| enhanced_matrix_sum = fg___numel | |
| else: | |
| parts_numel, combinations = self.generate_parts_numel_combinations( | |
| fg_fg_numel=fg_fg_numel, | |
| fg_bg_numel=fg_bg_numel, | |
| pred_fg_numel=fg___numel, | |
| pred_bg_numel=bg___numel, | |
| ) | |
| results_parts = [] | |
| for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)): | |
| align_matrix_value = ( | |
| 2 | |
| * (combination[0] * combination[1]) | |
| / (combination[0] ** 2 + combination[1] ** 2 + _EPS) | |
| ) | |
| enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 | |
| results_parts.append(enhanced_matrix_value * part_numel) | |
| enhanced_matrix_sum = sum(results_parts) | |
| em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) | |
| return em | |
| def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
| """ | |
| Calculate the E-measure corresponding to the threshold that varies from 0 to 255.. | |
| Variable naming rules within the function: | |
| ``[pred attribute(foreground fg, background bg)]_[gt attribute(foreground fg, background bg)]_[meaning]`` | |
| If only ``pred`` or ``gt`` is considered, another corresponding attribute location is replaced with '``_``'. | |
| """ | |
| pred = (pred * 255).astype(np.uint8) | |
| bins = np.linspace(0, 256, 257) | |
| fg_fg_hist, _ = np.histogram(pred[gt], bins=bins) | |
| fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins) | |
| fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0) | |
| fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0) | |
| fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs | |
| bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs | |
| if self.gt_fg_numel == 0: | |
| enhanced_matrix_sum = bg___numel_w_thrs | |
| elif self.gt_fg_numel == self.gt_size: | |
| enhanced_matrix_sum = fg___numel_w_thrs | |
| else: | |
| parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations( | |
| fg_fg_numel=fg_fg_numel_w_thrs, | |
| fg_bg_numel=fg_bg_numel_w_thrs, | |
| pred_fg_numel=fg___numel_w_thrs, | |
| pred_bg_numel=bg___numel_w_thrs, | |
| ) | |
| results_parts = np.empty(shape=(4, 256), dtype=np.float64) | |
| for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)): | |
| align_matrix_value = ( | |
| 2 | |
| * (combination[0] * combination[1]) | |
| / (combination[0] ** 2 + combination[1] ** 2 + _EPS) | |
| ) | |
| enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4 | |
| results_parts[i] = enhanced_matrix_value * part_numel | |
| enhanced_matrix_sum = results_parts.sum(axis=0) | |
| em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS) | |
| return em | |
| def generate_parts_numel_combinations( | |
| self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel | |
| ): | |
| bg_fg_numel = self.gt_fg_numel - fg_fg_numel | |
| bg_bg_numel = pred_bg_numel - bg_fg_numel | |
| parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel] | |
| mean_pred_value = pred_fg_numel / self.gt_size | |
| mean_gt_value = self.gt_fg_numel / self.gt_size | |
| demeaned_pred_fg_value = 1 - mean_pred_value | |
| demeaned_pred_bg_value = 0 - mean_pred_value | |
| demeaned_gt_fg_value = 1 - mean_gt_value | |
| demeaned_gt_bg_value = 0 - mean_gt_value | |
| combinations = [ | |
| (demeaned_pred_fg_value, demeaned_gt_fg_value), | |
| (demeaned_pred_fg_value, demeaned_gt_bg_value), | |
| (demeaned_pred_bg_value, demeaned_gt_fg_value), | |
| (demeaned_pred_bg_value, demeaned_gt_bg_value), | |
| ] | |
| return parts_numel, combinations | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about E-measure. | |
| :return: dict(em=dict(adp=adaptive_em, curve=changeable_em)) | |
| """ | |
| adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE)) | |
| changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0) | |
| return dict(em=dict(adp=adaptive_em, curve=changeable_em)) | |
| class WeightedFmeasure(object): | |
| def __init__(self, beta: float = 1): | |
| """ | |
| Weighted F-measure for SOD. | |
| :: | |
| @inproceedings{wFmeasure, | |
| title={How to eval foreground maps?}, | |
| author={Margolin, Ran and Zelnik-Manor, Lihi and Tal, Ayellet}, | |
| booktitle=CVPR, | |
| pages={248--255}, | |
| year={2014} | |
| } | |
| :param beta: the weight of the precision | |
| """ | |
| self.beta = beta | |
| self.weighted_fms = [] | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| pred, gt = _prepare_data(pred=pred, gt=gt) | |
| if np.all(~gt): | |
| wfm = 0 | |
| else: | |
| wfm = self.cal_wfm(pred, gt) | |
| self.weighted_fms.append(wfm) | |
| def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float: | |
| """ | |
| Calculate the weighted F-measure. | |
| """ | |
| Dst, Idxt = bwdist(gt == 0, return_indices=True) | |
| E = np.abs(pred - gt) | |
| Et = np.copy(E) | |
| Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]] | |
| K = self.matlab_style_gauss2D((7, 7), sigma=5) | |
| EA = convolve(Et, weights=K, mode="constant", cval=0) | |
| MIN_E_EA = np.where(gt & (EA < E), EA, E) | |
| B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt)) | |
| Ew = MIN_E_EA * B | |
| TPw = np.sum(gt) - np.sum(Ew[gt == 1]) | |
| FPw = np.sum(Ew[gt == 0]) | |
| R = 1 - np.mean(Ew[gt == 1]) | |
| P = TPw / (TPw + FPw + _EPS) | |
| Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS) | |
| return Q | |
| def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray: | |
| """ | |
| 2D gaussian mask - should give the same result as MATLAB's | |
| fspecial('saliency',[shape],[sigma]) | |
| """ | |
| m, n = [(ss - 1) / 2 for ss in shape] | |
| y, x = np.ogrid[-m : m + 1, -n : n + 1] | |
| h = np.exp(-(x * x + y * y) / (2 * sigma * sigma)) | |
| h[h < np.finfo(h.dtype).eps * h.max()] = 0 | |
| sumh = h.sum() | |
| if sumh != 0: | |
| h /= sumh | |
| return h | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about weighted F-measure. | |
| :return: dict(wfm=weighted_fm) | |
| """ | |
| weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE)) | |
| return dict(wfm=weighted_fm) | |
| class BoundaryAccuracy(object): | |
| def __init__(self): | |
| """ | |
| MAE(mean absolute error) for SOD. | |
| :: | |
| @inproceedings{MAE, | |
| title={Saliency filters: Contrast based filtering for salient region detection}, | |
| author={Perazzi, Federico and Kr{\"a}henb{\"u}hl, Philipp and Pritch, Yael and Hornung, Alexander}, | |
| booktitle=CVPR, | |
| pages={733--740}, | |
| year={2012} | |
| } | |
| """ | |
| self.bas = [] | |
| self.all_h = 0 | |
| self.all_w = 0 | |
| self.all_max = 0 | |
| def step(self, pred: np.ndarray, gt: np.ndarray): | |
| # pred, gt = _prepare_data(pred, gt) | |
| refined = gt.copy() | |
| rmin = cmin = 0 | |
| rmax, cmax = gt.shape | |
| self.all_h += rmax | |
| self.all_w += cmax | |
| self.all_max += max(rmax, cmax) | |
| refined_h, refined_w = refined.shape | |
| if refined_h != cmax: | |
| refined = np.array(Image.fromarray(pred).resize((cmax, rmax), Image.BILINEAR)) | |
| if not(gt.sum() < 32*32): | |
| if not((cmax==cmin) or (rmax==rmin)): | |
| class_refined_prob = np.array(Image.fromarray(pred).resize((cmax-cmin, rmax-rmin), Image.BILINEAR)) | |
| refined[rmin:rmax, cmin:cmax] = class_refined_prob | |
| pred = pred > 128 | |
| gt = gt > 128 | |
| ba = self.cal_ba(pred, gt) | |
| self.bas.append(ba) | |
| def get_disk_kernel(self, radius): | |
| return cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (radius*2+1, radius*2+1)) | |
| def cal_ba(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray: | |
| """ | |
| Calculate the mean absolute error. | |
| :return: ba | |
| """ | |
| gt = gt.astype(np.uint8) | |
| pred = pred.astype(np.uint8) | |
| h, w = gt.shape | |
| min_radius = 1 | |
| max_radius = (w+h)/300 | |
| num_steps = 5 | |
| pred_acc = [None] * num_steps | |
| for i in range(num_steps): | |
| curr_radius = min_radius + int((max_radius-min_radius)/num_steps*i) | |
| kernel = self.get_disk_kernel(curr_radius) | |
| boundary_region = cv2.morphologyEx(gt, cv2.MORPH_GRADIENT, kernel) > 0 | |
| gt_in_bound = gt[boundary_region] | |
| pred_in_bound = pred[boundary_region] | |
| num_edge_pixels = (boundary_region).sum() | |
| num_pred_gd_pix = ((gt_in_bound) * (pred_in_bound) + (1-gt_in_bound) * (1-pred_in_bound)).sum() | |
| pred_acc[i] = num_pred_gd_pix / num_edge_pixels | |
| ba = sum(pred_acc)/num_steps | |
| return ba | |
| def get_results(self) -> dict: | |
| """ | |
| Return the results about MAE. | |
| :return: dict(mae=mae) | |
| """ | |
| mba = np.mean(np.array(self.bas, _TYPE)) | |
| return dict(mba=mba) |