|
|
""" |
|
|
Hilbert Order |
|
|
Modified from https://github.com/PrincetonLIPS/numpy-hilbert-curve |
|
|
|
|
|
Author: Xiaoyang Wu (xiaoyang.wu.cs@gmail.com), Kaixin Xu |
|
|
Please cite our work if the code is helpful to you. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
|
|
|
|
|
|
|
def right_shift(binary, k=1, axis=-1): |
|
|
"""Right shift an array of binary values. |
|
|
|
|
|
Parameters: |
|
|
----------- |
|
|
binary: An ndarray of binary values. |
|
|
|
|
|
k: The number of bits to shift. Default 1. |
|
|
|
|
|
axis: The axis along which to shift. Default -1. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
Returns an ndarray with zero prepended and the ends truncated, along |
|
|
whatever axis was specified.""" |
|
|
|
|
|
|
|
|
if binary.shape[axis] <= k: |
|
|
return torch.zeros_like(binary) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
slicing = [slice(None)] * len(binary.shape) |
|
|
slicing[axis] = slice(None, -k) |
|
|
shifted = torch.nn.functional.pad( |
|
|
binary[tuple(slicing)], (k, 0), mode="constant", value=0 |
|
|
) |
|
|
|
|
|
return shifted |
|
|
|
|
|
|
|
|
def binary2gray(binary, axis=-1): |
|
|
"""Convert an array of binary values into Gray codes. |
|
|
|
|
|
This uses the classic X ^ (X >> 1) trick to compute the Gray code. |
|
|
|
|
|
Parameters: |
|
|
----------- |
|
|
binary: An ndarray of binary values. |
|
|
|
|
|
axis: The axis along which to compute the gray code. Default=-1. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
Returns an ndarray of Gray codes. |
|
|
""" |
|
|
shifted = right_shift(binary, axis=axis) |
|
|
|
|
|
|
|
|
gray = torch.logical_xor(binary, shifted) |
|
|
|
|
|
return gray |
|
|
|
|
|
|
|
|
def gray2binary(gray, axis=-1): |
|
|
"""Convert an array of Gray codes back into binary values. |
|
|
|
|
|
Parameters: |
|
|
----------- |
|
|
gray: An ndarray of gray codes. |
|
|
|
|
|
axis: The axis along which to perform Gray decoding. Default=-1. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
Returns an ndarray of binary values. |
|
|
""" |
|
|
|
|
|
|
|
|
shift = 2 ** (torch.Tensor([gray.shape[axis]]).log2().ceil().int() - 1) |
|
|
while shift > 0: |
|
|
gray = torch.logical_xor(gray, right_shift(gray, shift)) |
|
|
shift = torch.div(shift, 2, rounding_mode="floor") |
|
|
return gray |
|
|
|
|
|
|
|
|
def encode(locs, num_dims, num_bits): |
|
|
"""Decode an array of locations in a hypercube into a Hilbert integer. |
|
|
|
|
|
This is a vectorized-ish version of the Hilbert curve implementation by John |
|
|
Skilling as described in: |
|
|
|
|
|
Skilling, J. (2004, April). Programming the Hilbert curve. In AIP Conference |
|
|
Proceedings (Vol. 707, No. 1, pp. 381-387). American Institute of Physics. |
|
|
|
|
|
Params: |
|
|
------- |
|
|
locs - An ndarray of locations in a hypercube of num_dims dimensions, in |
|
|
which each dimension runs from 0 to 2**num_bits-1. The shape can |
|
|
be arbitrary, as long as the last dimension of the same has size |
|
|
num_dims. |
|
|
|
|
|
num_dims - The dimensionality of the hypercube. Integer. |
|
|
|
|
|
num_bits - The number of bits for each dimension. Integer. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
The output is an ndarray of uint64 integers with the same shape as the |
|
|
input, excluding the last dimension, which needs to be num_dims. |
|
|
""" |
|
|
|
|
|
|
|
|
orig_shape = locs.shape |
|
|
bitpack_mask = 1 << torch.arange(0, 8).to(locs.device) |
|
|
bitpack_mask_rev = bitpack_mask.flip(-1) |
|
|
|
|
|
if orig_shape[-1] != num_dims: |
|
|
raise ValueError( |
|
|
""" |
|
|
The shape of locs was surprising in that the last dimension was of size |
|
|
%d, but num_dims=%d. These need to be equal. |
|
|
""" |
|
|
% (orig_shape[-1], num_dims) |
|
|
) |
|
|
|
|
|
if num_dims * num_bits > 63: |
|
|
raise ValueError( |
|
|
""" |
|
|
num_dims=%d and num_bits=%d for %d bits total, which can't be encoded |
|
|
into a int64. Are you sure you need that many points on your Hilbert |
|
|
curve? |
|
|
""" |
|
|
% (num_dims, num_bits, num_dims * num_bits) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
locs_uint8 = locs.long().view(torch.uint8).reshape((-1, num_dims, 8)).flip(-1) |
|
|
|
|
|
|
|
|
gray = ( |
|
|
locs_uint8.unsqueeze(-1) |
|
|
.bitwise_and(bitpack_mask_rev) |
|
|
.ne(0) |
|
|
.byte() |
|
|
.flatten(-2, -1)[..., -num_bits:] |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
for bit in range(0, num_bits): |
|
|
|
|
|
for dim in range(0, num_dims): |
|
|
|
|
|
mask = gray[:, dim, bit] |
|
|
|
|
|
|
|
|
gray[:, 0, bit + 1 :] = torch.logical_xor( |
|
|
gray[:, 0, bit + 1 :], mask[:, None] |
|
|
) |
|
|
|
|
|
|
|
|
to_flip = torch.logical_and( |
|
|
torch.logical_not(mask[:, None]).repeat(1, gray.shape[2] - bit - 1), |
|
|
torch.logical_xor(gray[:, 0, bit + 1 :], gray[:, dim, bit + 1 :]), |
|
|
) |
|
|
gray[:, dim, bit + 1 :] = torch.logical_xor( |
|
|
gray[:, dim, bit + 1 :], to_flip |
|
|
) |
|
|
gray[:, 0, bit + 1 :] = torch.logical_xor(gray[:, 0, bit + 1 :], to_flip) |
|
|
|
|
|
|
|
|
gray = gray.swapaxes(1, 2).reshape((-1, num_bits * num_dims)) |
|
|
|
|
|
|
|
|
hh_bin = gray2binary(gray) |
|
|
|
|
|
|
|
|
extra_dims = 64 - num_bits * num_dims |
|
|
padded = torch.nn.functional.pad(hh_bin, (extra_dims, 0), "constant", 0) |
|
|
|
|
|
|
|
|
hh_uint8 = ( |
|
|
(padded.flip(-1).reshape((-1, 8, 8)) * bitpack_mask) |
|
|
.sum(2) |
|
|
.squeeze() |
|
|
.type(torch.uint8) |
|
|
) |
|
|
|
|
|
|
|
|
hh_uint64 = hh_uint8.view(torch.int64).squeeze() |
|
|
|
|
|
return hh_uint64 |
|
|
|
|
|
|
|
|
def decode(hilberts, num_dims, num_bits): |
|
|
"""Decode an array of Hilbert integers into locations in a hypercube. |
|
|
|
|
|
This is a vectorized-ish version of the Hilbert curve implementation by John |
|
|
Skilling as described in: |
|
|
|
|
|
Skilling, J. (2004, April). Programming the Hilbert curve. In AIP Conference |
|
|
Proceedings (Vol. 707, No. 1, pp. 381-387). American Institute of Physics. |
|
|
|
|
|
Params: |
|
|
------- |
|
|
hilberts - An ndarray of Hilbert integers. Must be an integer dtype and |
|
|
cannot have fewer bits than num_dims * num_bits. |
|
|
|
|
|
num_dims - The dimensionality of the hypercube. Integer. |
|
|
|
|
|
num_bits - The number of bits for each dimension. Integer. |
|
|
|
|
|
Returns: |
|
|
-------- |
|
|
The output is an ndarray of unsigned integers with the same shape as hilberts |
|
|
but with an additional dimension of size num_dims. |
|
|
""" |
|
|
|
|
|
if num_dims * num_bits > 64: |
|
|
raise ValueError( |
|
|
""" |
|
|
num_dims=%d and num_bits=%d for %d bits total, which can't be encoded |
|
|
into a uint64. Are you sure you need that many points on your Hilbert |
|
|
curve? |
|
|
""" |
|
|
% (num_dims, num_bits) |
|
|
) |
|
|
|
|
|
|
|
|
hilberts = torch.atleast_1d(hilberts) |
|
|
|
|
|
|
|
|
orig_shape = hilberts.shape |
|
|
bitpack_mask = 2 ** torch.arange(0, 8).to(hilberts.device) |
|
|
bitpack_mask_rev = bitpack_mask.flip(-1) |
|
|
|
|
|
|
|
|
|
|
|
hh_uint8 = ( |
|
|
hilberts.ravel().type(torch.int64).view(torch.uint8).reshape((-1, 8)).flip(-1) |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
hh_bits = ( |
|
|
hh_uint8.unsqueeze(-1) |
|
|
.bitwise_and(bitpack_mask_rev) |
|
|
.ne(0) |
|
|
.byte() |
|
|
.flatten(-2, -1)[:, -num_dims * num_bits :] |
|
|
) |
|
|
|
|
|
|
|
|
gray = binary2gray(hh_bits) |
|
|
|
|
|
|
|
|
|
|
|
gray = gray.reshape((-1, num_bits, num_dims)).swapaxes(1, 2) |
|
|
|
|
|
|
|
|
for bit in range(num_bits - 1, -1, -1): |
|
|
|
|
|
for dim in range(num_dims - 1, -1, -1): |
|
|
|
|
|
mask = gray[:, dim, bit] |
|
|
|
|
|
|
|
|
gray[:, 0, bit + 1 :] = torch.logical_xor( |
|
|
gray[:, 0, bit + 1 :], mask[:, None] |
|
|
) |
|
|
|
|
|
|
|
|
to_flip = torch.logical_and( |
|
|
torch.logical_not(mask[:, None]), |
|
|
torch.logical_xor(gray[:, 0, bit + 1 :], gray[:, dim, bit + 1 :]), |
|
|
) |
|
|
gray[:, dim, bit + 1 :] = torch.logical_xor( |
|
|
gray[:, dim, bit + 1 :], to_flip |
|
|
) |
|
|
gray[:, 0, bit + 1 :] = torch.logical_xor(gray[:, 0, bit + 1 :], to_flip) |
|
|
|
|
|
|
|
|
extra_dims = 64 - num_bits |
|
|
padded = torch.nn.functional.pad(gray, (extra_dims, 0), "constant", 0) |
|
|
|
|
|
|
|
|
locs_chopped = padded.flip(-1).reshape((-1, num_dims, 8, 8)) |
|
|
|
|
|
|
|
|
|
|
|
locs_uint8 = (locs_chopped * bitpack_mask).sum(3).squeeze().type(torch.uint8) |
|
|
|
|
|
|
|
|
flat_locs = locs_uint8.view(torch.int64) |
|
|
|
|
|
|
|
|
return flat_locs.reshape((*orig_shape, num_dims)) |
|
|
|