Spaces:
Sleeping
Sleeping
Delete app.py
Browse files
app.py
DELETED
|
@@ -1,249 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import numpy as np
|
| 3 |
-
import time
|
| 4 |
-
import torch
|
| 5 |
-
import matplotlib.pyplot as plt
|
| 6 |
-
import tempfile
|
| 7 |
-
|
| 8 |
-
# CPU kernel
|
| 9 |
-
def fused_mom_update_cpu(m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
|
| 10 |
-
dt, eps, sigma_const, theta_global, k_shred_global,
|
| 11 |
-
event_counts_t=None, event_buffer_t=None):
|
| 12 |
-
m_root_t = m_root_t.to(torch.float32)
|
| 13 |
-
A_t = A_t.to(torch.float32)
|
| 14 |
-
Q_t = Q_t.to(torch.float32)
|
| 15 |
-
alpha_t = alpha_t.to(torch.float32)
|
| 16 |
-
gamma_t = gamma_t.to(torch.float32)
|
| 17 |
-
omega_t = omega_t.to(torch.float32)
|
| 18 |
-
|
| 19 |
-
alpha_exp = alpha_t.unsqueeze(0)
|
| 20 |
-
gamma_exp = gamma_t.unsqueeze(0)
|
| 21 |
-
omega_exp = omega_t.unsqueeze(0)
|
| 22 |
-
m_root_exp = m_root_t.unsqueeze(1)
|
| 23 |
-
|
| 24 |
-
A_dot = alpha_exp * m_root_exp - gamma_exp * A_t + sigma_const * Q_t
|
| 25 |
-
f_drive = sigma_const * m_root_exp * omega_exp * A_t
|
| 26 |
-
Q_dot = f_drive - Q_t
|
| 27 |
-
|
| 28 |
-
A_t.add_(dt * A_dot)
|
| 29 |
-
Q_t.add_(dt * Q_dot)
|
| 30 |
-
|
| 31 |
-
Xi = (omega_exp * A_t).sum(dim=1)
|
| 32 |
-
Xi_norm = Xi / (m_root_t + eps)
|
| 33 |
-
shred_mask = Xi_norm >= theta_global
|
| 34 |
-
|
| 35 |
-
if torch.any(shred_mask):
|
| 36 |
-
eta_values = torch.zeros_like(Xi_norm)
|
| 37 |
-
eta_calc = 1.0 - torch.exp(-k_shred_global * (Xi_norm[shred_mask] - theta_global))
|
| 38 |
-
eta_values[shred_mask] = torch.clamp(eta_calc, 0.0, 1.0)
|
| 39 |
-
|
| 40 |
-
diss = 0.01 * m_root_t * eta_values
|
| 41 |
-
m_post = (1.0 - eta_values) * m_root_t - diss
|
| 42 |
-
m_post = torch.clamp(m_post, min=0.0)
|
| 43 |
-
|
| 44 |
-
m_root_t[shred_mask] = m_post[shred_mask]
|
| 45 |
-
|
| 46 |
-
shred_count = int(torch.sum(shred_mask).item())
|
| 47 |
-
if event_counts_t is not None:
|
| 48 |
-
if isinstance(event_counts_t, torch.Tensor):
|
| 49 |
-
if event_counts_t.dtype not in (torch.int64, torch.int32):
|
| 50 |
-
event_counts_t = event_counts_t.to(torch.int64)
|
| 51 |
-
event_counts_t.add_(shred_count)
|
| 52 |
-
else:
|
| 53 |
-
event_counts_t += shred_count
|
| 54 |
-
|
| 55 |
-
return m_root_t, A_t, Q_t, event_counts_t
|
| 56 |
-
|
| 57 |
-
class MOMKernel:
|
| 58 |
-
def __init__(self):
|
| 59 |
-
self.kernel = fused_mom_update_cpu
|
| 60 |
-
self.device = torch.device('cpu')
|
| 61 |
-
|
| 62 |
-
def __call__(self, m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
|
| 63 |
-
dt, eps, sigma_const, theta_global, k_shred_global,
|
| 64 |
-
event_counts_t=None, event_buffer_t=None):
|
| 65 |
-
return self.kernel(m_root_t, A_t, Q_t, alpha_t, gamma_t, omega_t,
|
| 66 |
-
dt, eps, sigma_const, theta_global, k_shred_global,
|
| 67 |
-
event_counts_t, event_buffer_t)
|
| 68 |
-
|
| 69 |
-
class MOMSystemLoop:
|
| 70 |
-
def __init__(self, mom_kernel, m_root_initial, A_modes_initial, Q_drive_initial,
|
| 71 |
-
alpha, gamma, omega, dt=0.02, eps=1e-6, sigma=0.75,
|
| 72 |
-
theta=2.2, k_shred=1.2, event_buffer_size=1024):
|
| 73 |
-
self.mom_kernel = mom_kernel
|
| 74 |
-
self.device = mom_kernel.device
|
| 75 |
-
self.m_root = m_root_initial.to(self.device).clone().to(torch.float32)
|
| 76 |
-
self.A_modes = A_modes_initial.to(self.device).clone().to(torch.float32)
|
| 77 |
-
self.Q_drive = Q_drive_initial.to(self.device).clone().to(torch.float32)
|
| 78 |
-
self.alpha = alpha.to(self.device).to(torch.float32)
|
| 79 |
-
self.gamma = gamma.to(self.device).to(torch.float32)
|
| 80 |
-
self.omega = omega.to(self.device).to(torch.float32)
|
| 81 |
-
self.dt = dt; self.eps = eps; self.sigma = sigma
|
| 82 |
-
self.theta = theta; self.k_shred = k_shred
|
| 83 |
-
self.event_counts = torch.zeros((), dtype=torch.int64, device=self.device)
|
| 84 |
-
self.event_buffer = torch.zeros(event_buffer_size, dtype=torch.int64, device=self.device)
|
| 85 |
-
self.m_root_history = []
|
| 86 |
-
self.A_modes_history = []
|
| 87 |
-
self.event_counts_history = []
|
| 88 |
-
self.shred_onset = np.full((self.m_root.shape[0],), -1, dtype=np.int32)
|
| 89 |
-
|
| 90 |
-
def feedback(self, m_root, A_modes, Q_drive):
|
| 91 |
-
decay = 0.995; noise_level = 1e-4
|
| 92 |
-
A_modes_new = A_modes * decay + noise_level * torch.randn_like(A_modes, device=self.device)
|
| 93 |
-
A_modes_new = torch.clamp(A_modes_new, min=0.0)
|
| 94 |
-
m_root_new = m_root * decay + noise_level * torch.randn_like(m_root, device=self.device)
|
| 95 |
-
m_root_new = torch.clamp(m_root_new, min=0.0)
|
| 96 |
-
return m_root_new, A_modes_new, Q_drive
|
| 97 |
-
|
| 98 |
-
def run(self, iterations):
|
| 99 |
-
for i in range(iterations):
|
| 100 |
-
self.event_counts.zero_()
|
| 101 |
-
self.mom_kernel(self.m_root, self.A_modes, self.Q_drive,
|
| 102 |
-
self.alpha, self.gamma, self.omega,
|
| 103 |
-
self.dt, self.eps, self.sigma, self.theta, self.k_shred,
|
| 104 |
-
self.event_counts, self.event_buffer)
|
| 105 |
-
m_np = self.m_root.detach().cpu().numpy()
|
| 106 |
-
collapsed_mask = m_np <= 1e-8
|
| 107 |
-
for idx, collapsed in enumerate(collapsed_mask):
|
| 108 |
-
if collapsed and self.shred_onset[idx] == -1:
|
| 109 |
-
self.shred_onset[idx] = i
|
| 110 |
-
self.m_root, self.A_modes, self.Q_drive = self.feedback(self.m_root, self.A_modes, self.Q_drive)
|
| 111 |
-
self.m_root_history.append(float(self.m_root.mean().item()))
|
| 112 |
-
self.A_modes_history.append(float(self.A_modes.mean().item()))
|
| 113 |
-
self.event_counts_history.append(int(self.event_counts.item()))
|
| 114 |
-
|
| 115 |
-
def run_rft_simulation(Ncells, Nmode, iterations, dt=0.02, eps=1e-6, sigma=0.75,
|
| 116 |
-
theta=2.2, k_shred=1.2, seed=42):
|
| 117 |
-
torch.manual_seed(seed); np.random.seed(seed)
|
| 118 |
-
mom_kernel_instance = MOMKernel()
|
| 119 |
-
device = mom_kernel_instance.device
|
| 120 |
-
alpha = torch.empty(Nmode, device=device).uniform_(0.02, 0.12)
|
| 121 |
-
gamma = torch.empty(Nmode, device=device).uniform_(0.01, 0.06)
|
| 122 |
-
omega = torch.linspace(1.0, 8.0, Nmode, device=device)
|
| 123 |
-
m_root_initial = torch.ones(Ncells, device=device)
|
| 124 |
-
A_modes_initial = torch.rand(Ncells, Nmode, device=device) * 0.01
|
| 125 |
-
Q_drive_initial = torch.zeros(Ncells, Nmode, device=device)
|
| 126 |
-
mom_system = MOMSystemLoop(mom_kernel_instance, m_root_initial, A_modes_initial, Q_drive_initial,
|
| 127 |
-
alpha, gamma, omega, dt=dt, eps=eps, sigma=sigma,
|
| 128 |
-
theta=theta, k_shred=k_shred)
|
| 129 |
-
start_time = time.time()
|
| 130 |
-
mom_system.run(iterations)
|
| 131 |
-
elapsed_time = max(time.time() - start_time, 1e-9)
|
| 132 |
-
ops_per_cell_per_iter = 12 * Nmode + 13
|
| 133 |
-
flops_per_iteration = float(Ncells) * float(ops_per_cell_per_iter)
|
| 134 |
-
total_flops = flops_per_iteration * float(iterations)
|
| 135 |
-
gflops = total_flops / (elapsed_time * 1e9)
|
| 136 |
-
return {
|
| 137 |
-
'final_m_root': mom_system.m_root.cpu().numpy(),
|
| 138 |
-
'final_A_modes': mom_system.A_modes.cpu().numpy(),
|
| 139 |
-
'final_Q_drive': mom_system.Q_drive.cpu().numpy(),
|
| 140 |
-
'm_root_history': np.array(mom_system.m_root_history),
|
| 141 |
-
'A_modes_history': np.array(mom_system.A_modes_history),
|
| 142 |
-
'event_counts_history': np.array(mom_system.event_counts_history),
|
| 143 |
-
'shred_onset': mom_system.shred_onset,
|
| 144 |
-
'elapsed_time_seconds': float(elapsed_time),
|
| 145 |
-
'gflops': float(gflops),
|
| 146 |
-
}
|
| 147 |
-
|
| 148 |
-
def rft_simulation_interface(Ncells, Nmode, iterations, dt, eps, sigma, theta, k_shred):
|
| 149 |
-
try:
|
| 150 |
-
results = run_rft_simulation(Ncells, Nmode, iterations, dt, eps, sigma, theta, k_shred)
|
| 151 |
-
fig = plt.figure(figsize=(10, 14))
|
| 152 |
-
ax1 = fig.add_subplot(4, 1, 1)
|
| 153 |
-
ax1.plot(results['m_root_history'], label='Mean m_root')
|
| 154 |
-
ax1.set_title('Mean m_root Over Iterations'); ax1.set_xlabel('Iteration'); ax1.set_ylabel('Mean m_root')
|
| 155 |
-
ax1.grid(True); ax1.legend()
|
| 156 |
-
ax2 = fig.add_subplot(4, 1, 2)
|
| 157 |
-
ax2.plot(results['A_modes_history'], label='Mean A_modes', color='orange')
|
| 158 |
-
ax2.set_title('Mean A_modes Over Iterations')
|
| 159 |
-
ax2.set_xlabel('Iteration'); ax2.set_ylabel('Mean A_modes')
|
| 160 |
-
ax2.grid(True); ax2.legend()
|
| 161 |
-
|
| 162 |
-
# Plot 3: Cumulative Shredding Events
|
| 163 |
-
ax3 = fig.add_subplot(4, 1, 3)
|
| 164 |
-
cumulative_events = np.cumsum(results['event_counts_history'])
|
| 165 |
-
ax3.plot(cumulative_events, label='Cumulative Shredding Events', color='red')
|
| 166 |
-
ax3.set_title('Cumulative Shredding Events')
|
| 167 |
-
ax3.set_xlabel('Iteration'); ax3.set_ylabel('Cumulative Events')
|
| 168 |
-
ax3.grid(True); ax3.legend()
|
| 169 |
-
|
| 170 |
-
# Plot 4: Raster of shredding onset per cell
|
| 171 |
-
ax4 = fig.add_subplot(4, 1, 4)
|
| 172 |
-
onset = results['shred_onset']
|
| 173 |
-
for idx, val in enumerate(onset):
|
| 174 |
-
if val >= 0:
|
| 175 |
-
ax4.vlines(val, idx, idx + 1, color='black', linewidth=0.8)
|
| 176 |
-
ax4.set_title('Shredding Onset per Cell')
|
| 177 |
-
ax4.set_xlabel('Iteration'); ax4.set_ylabel('Cell Index')
|
| 178 |
-
ax4.grid(True)
|
| 179 |
-
|
| 180 |
-
plt.tight_layout()
|
| 181 |
-
_, plot_path = tempfile.mkstemp(suffix=".png")
|
| 182 |
-
plt.savefig(plot_path)
|
| 183 |
-
plt.close(fig)
|
| 184 |
-
|
| 185 |
-
summary_output = (
|
| 186 |
-
f"Simulation completed in {results['elapsed_time_seconds']:.2f} seconds.\n\n"
|
| 187 |
-
f"Estimated GFLOPS: {results['gflops']:.2f}\n"
|
| 188 |
-
f"Final Mean m_root: {np.mean(results['final_m_root']):.6f}\n"
|
| 189 |
-
f"Final Mean A_modes: {np.mean(results['final_A_modes']):.6f}\n"
|
| 190 |
-
f"Total Events (last iteration): {results['event_counts_history'][-1] if len(results['event_counts_history']) > 0 else 0}\n\n"
|
| 191 |
-
f"-- Historical Data (first 5 values) --\n"
|
| 192 |
-
f"Mean m_root history: {results['m_root_history'][:5].tolist()}\n"
|
| 193 |
-
f"Mean A_modes history: {results['A_modes_history'][:5].tolist()}\n"
|
| 194 |
-
f"Event counts history: {results['event_counts_history'][:5].tolist()}"
|
| 195 |
-
)
|
| 196 |
-
except Exception as e:
|
| 197 |
-
summary_output = f"Error during RFT simulation: {e}"
|
| 198 |
-
plot_path = None
|
| 199 |
-
|
| 200 |
-
return summary_output, plot_path
|
| 201 |
-
|
| 202 |
-
# --- Explanatory markdown embedded directly ---
|
| 203 |
-
with gr.Blocks(title="Rendered Frame Theory (RFT) Simulation Interface") as iface:
|
| 204 |
-
gr.Markdown("""
|
| 205 |
-
### What is Rendered Frame Theory (RFT)?
|
| 206 |
-
|
| 207 |
-
Rendered Frame Theory (RFT) is a computational framework for simulating complex adaptive systems with emergent, non-linear dynamics. It models a system as a collection of cells, each with internal modes that evolve over time through coupled updates and event-driven transitions.
|
| 208 |
-
|
| 209 |
-
**Key features:**
|
| 210 |
-
- ⚡ Dynamic systems: Evolves m_root (root mass), A_modes (mode amplitudes), and Q_drive (drive) over iterations.
|
| 211 |
-
- 🔄 Feedback loops: Each iteration adjusts states based on prior values, enabling adaptation.
|
| 212 |
-
- 🌀 Emergent behavior: A shredding mechanism triggers non-linear collapse when stress crosses a threshold.
|
| 213 |
-
- 📈 Performance scaling: Designed to scale with the number of cells and modes, enabling large explorations.
|
| 214 |
-
|
| 215 |
-
**Why it matters:**
|
| 216 |
-
- 🔬 Granularity: Captures local interactions and cell-level transitions that averaged models miss.
|
| 217 |
-
- ⚠️ Critical events: Models sudden cascades like market crashes, neural avalanches, or material failure.
|
| 218 |
-
- 🌍 Versatility: Applicable to finance, biology, engineering, and AI research.
|
| 219 |
-
|
| 220 |
-
The shredding onset plot shows when each cell first collapses, making cascades visible in time.
|
| 221 |
-
""")
|
| 222 |
-
|
| 223 |
-
with gr.Row():
|
| 224 |
-
with gr.Column():
|
| 225 |
-
gr.Markdown("### Simulation Parameters")
|
| 226 |
-
Ncells_slider = gr.Slider(minimum=16, maximum=512, step=16, value=64, label="⚡ Number of Cells (Ncells)")
|
| 227 |
-
Nmode_slider = gr.Slider(minimum=2, maximum=32, step=2, value=8, label="🔮 Number of Modes (Nmode)")
|
| 228 |
-
iterations_slider = gr.Slider(minimum=10, maximum=200, step=10, value=50, label="♾ Iterations")
|
| 229 |
-
dt_slider = gr.Slider(minimum=0.001, maximum=0.1, step=0.001, value=0.02, label="⌛ Time Step (dt)")
|
| 230 |
-
eps_slider = gr.Slider(minimum=1e-7, maximum=1e-4, step=1e-7, value=1e-6, label="🧿 Epsilon (eps)")
|
| 231 |
-
sigma_slider = gr.Slider(minimum=0.1, maximum=1.0, step=0.05, value=0.75, label="🌌 Sigma (coupling strength)")
|
| 232 |
-
theta_slider = gr.Slider(minimum=0.1, maximum=5.0, step=0.1, value=2.2, label="🔭 Theta (Shredding Threshold)")
|
| 233 |
-
k_shred_slider = gr.Slider(minimum=0.1, maximum=5.0, step=0.1, value=1.2, label="🌀 K_shred (Shredding Rate)")
|
| 234 |
-
run_button = gr.Button("Run Simulation")
|
| 235 |
-
|
| 236 |
-
with gr.Column():
|
| 237 |
-
gr.Markdown("### Simulation Results")
|
| 238 |
-
summary_output_textbox = gr.Textbox(label="Simulation Summary", lines=15)
|
| 239 |
-
plot_output_image = gr.Image(label="Simulation Plots", type="filepath")
|
| 240 |
-
|
| 241 |
-
run_button.click(
|
| 242 |
-
fn=rft_simulation_interface,
|
| 243 |
-
inputs=[Ncells_slider, Nmode_slider, iterations_slider, dt_slider, eps_slider,
|
| 244 |
-
sigma_slider, theta_slider, k_shred_slider],
|
| 245 |
-
outputs=[summary_output_textbox, plot_output_image]
|
| 246 |
-
)
|
| 247 |
-
|
| 248 |
-
if __name__ == "__main__":
|
| 249 |
-
iface.launch(share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|