File size: 6,715 Bytes
eae4ebb
 
 
82f5ccf
e046e71
82f5ccf
 
 
 
 
e046e71
82f5ccf
eae4ebb
 
 
 
 
 
 
 
 
 
 
 
 
 
82f5ccf
eae4ebb
 
 
82f5ccf
 
e046e71
 
 
 
82f5ccf
 
 
 
e046e71
82f5ccf
 
 
 
 
 
 
 
 
 
 
 
e046e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82f5ccf
 
 
 
e046e71
82f5ccf
 
 
e046e71
82f5ccf
 
 
 
e046e71
82f5ccf
e046e71
82f5ccf
 
 
 
 
 
 
e046e71
82f5ccf
e046e71
82f5ccf
 
e046e71
 
 
 
82f5ccf
e046e71
82f5ccf
 
 
e046e71
 
 
 
 
 
82f5ccf
 
 
 
 
 
 
e046e71
 
 
 
 
 
 
 
 
82f5ccf
 
 
 
e046e71
82f5ccf
 
e046e71
82f5ccf
e046e71
82f5ccf
 
 
 
e046e71
82f5ccf
e046e71
 
 
82f5ccf
 
 
e046e71
 
82f5ccf
 
9dc523f
82f5ccf
 
 
eae4ebb
82f5ccf
e046e71
82f5ccf
eae4ebb
 
 
 
 
 
 
82f5ccf
e046e71
eae4ebb
 
 
 
 
 
 
82f5ccf
e046e71
 
 
82f5ccf
e046e71
 
82f5ccf
 
 
eae4ebb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
import gradio as gr
import hashlib, random

# =========================
# Utilities
# =========================
def sha_seal(s: str) -> str:
    return hashlib.sha512(s.encode()).hexdigest()[:32] + "..."

# =========================
# Codex symbolic mutation (50 epochs)
# =========================
operators = ["\\sin", "\\cos", "\\exp", "\\log", "\\nabla", "\\int", "\\frac{\\partial}{\\partial t}"]
variables = ["x", "y", "t", "\\xi_1", "dP", "d\\Psi", "dT"]

def mutate_formula(base, epoch):
    if epoch % 5 == 0:
        base = f"\\int ({base}) \\, dx"
    elif epoch % 7 == 0:
        base = f"\\nabla \\cdot ({base})"
    else:
        new_term = random.choice(operators) + "(" + random.choice(variables) + ")"
        base = base + " + " + new_term
    return base

def run_epochs(n=50):
    ledger = []
    base = "x^2 + 1"
    for epoch in range(1, n+1):
        base = mutate_formula(base, epoch)
        seal = sha_seal(base)
        ledger.append(
            f"## Epoch {epoch}\n\n"
            f"$$ {base} $$\n\n"
            f"**Immortality Glyph:** `{seal}`\n\n"
            f"---\n"
        )
    return "\n".join(ledger)

# =========================
# 4D Manifold Forge (20-epoch lineage)
# =========================
coords = ["u", "v", "w", "t"]

def pretty_metric(g):
    rows = []
    for i in range(4):
        row = " & ".join(g[i])
        rows.append(row)
    mat = " \\\\ ".join(rows)
    return "\\begin{pmatrix}" + mat + "\\end{pmatrix}"

def det_approx(g):
    # Heuristic evolving invariant (not exact): maps symbolic entries to small positive values
    def val(s):
        base = 1.0
        base += 0.01 * (len(s) % 10)
        base += 0.02 * sum(ch.isalpha() for ch in s)
        return base
    M = [[val(g[i][j]) for j in range(4)] for i in range(4)]
    # Naive LU-like determinant
    import copy
    A = copy.deepcopy(M)
    det = 1.0
    for i in range(4):
        pivot = A[i][i]
        if abs(pivot) < 1e-9:
            return 0.0
        det *= pivot
        for j in range(i+1,4):
            factor = A[j][i]/pivot
            for k in range(i,4):
                A[j][k] -= factor*A[i][k]
    return det

def signature_hint(g):
    diag = [g[i][i] for i in range(4)]
    pos = sum("exp" in d for d in diag)
    neg = sum("log" in d for d in diag)
    osc = sum(("sin" in d) or ("cos" in d) for d in diag)
    return f"(+:{pos}, -:{neg}, ~:{osc})"

def random_overlay(c):
    overlays = [
        f"1+\\sin({c})",
        f"1+\\cos({c})",
        f"1+\\exp({c})",
        f"1+\\log\\!\\big(1+{c}^2\\big)"
    ]
    return random.choice(overlays)

def mutate_metric(g, epoch, intensity="medium"):
    idx_pairs = [(0,0),(1,1),(2,2),(3,3),
                 (0,1),(0,2),(0,3),(1,2),(1,3),(2,3)]
    k = 2 if intensity=="low" else (4 if intensity=="medium" else 6)
    chosen = random.sample(idx_pairs, min(k, len(idx_pairs)))
    for (i,j) in chosen:
        ci, cj = coords[i], coords[j]
        if i == j:
            g[i][j] = random_overlay(ci)
        else:
            mix = [
                f"\\cos({ci})+\\log\\!\\big(1+{cj}^2\\big)",
                f"\\exp({cj})-\\cos({ci})",
                f"\\sin({ci}{cj})",
                f"\\cos({ci})+\\log\\!\\big(1+{cj}^2\\big)"
            ]
            g[i][j] = random.choice(mix)
            g[j][i] = g[i][j]
    return g

def christoffel_snippet():
    return (
        "\\Gamma^{1}_{\\;12} = \\tfrac{1}{2}\\, g^{11}\\!\\left(\\partial_{u} g_{22} + \\partial_{v} g_{12} - \\partial_{v} g_{11}\\right),\\quad"
        "\\Gamma^{2}_{\\;34} = \\tfrac{1}{2}\\, g^{22}\\!\\left(\\partial_{v} g_{44} + \\partial_{t} g_{24} - \\partial_{w} g_{23}\\right),\\quad"
        "\\Gamma^{4}_{\\;13} = \\tfrac{1}{2}\\, g^{44}\\!\\left(\\partial_{u} g_{33} + \\partial_{w} g_{13} - \\partial_{u} g_{34}\\right)"
    )

def scalar_curvature_hint(g):
    d = det_approx(g)
    return f"\\mathcal{{R}} \\approx {d:.3f}"

def run_manifold(signature_choice="Euclidean (+,+,+,+)", intensity="medium", epochs=20):
    if signature_choice.startswith("Euclidean"):
        g = [["1","0","0","0"],
             ["0","1","0","0"],
             ["0","0","1","0"],
             ["0","0","0","1"]]
    else:
        g = [["1","0","0","0"],
             ["0","1","0","0"],
             ["0","0","1","0"],
             ["0","0","0","-1"]]

    ledger = []
    for epoch in range(1, epochs+1):
        g = mutate_metric(g, epoch, intensity=intensity)
        g_latex = pretty_metric(g)
        detg = det_approx(g)
        sig = signature_hint(g)
        Gamma = christoffel_snippet()
        Rscalar = scalar_curvature_hint(g)
        vol = "dV = \\sqrt{\\det g}\\, du\\, dv\\, dw\\, dt"
        seal = sha_seal(g_latex + Rscalar)

        entry = (
            f"## Manifold Epoch {epoch}\n\n"
            f"**Coordinates:** $\\mathbf{{X}}=(u,v,w,t)$\n\n"
            f"**Metric** $g_{{ij}}$:\n\n"
            f"$$ {g_latex} $$\n\n"
            f"**Representative connections:**\n\n"
            f"$$ {Gamma} $$\n\n"
            f"**Invariants:**  \n"
            f"- **Determinant:** $\\det g \\approx {detg:.3f}$  \n"
            f"- **Signature hint:** `{sig}`  \n"
            f"- **Scalar curvature hint:** $$ {Rscalar} $$  \n"
            f"- **Volume element:** $$ {vol} $$\n\n"
            f"**Immortality Glyph:** `{seal}`\n\n"
            f"---\n"
        )
        ledger.append(entry)

    return "\n".join(ledger)

# =========================
# App UI
# =========================
custom_theme = gr.themes.Base(
    primary_hue="cyan",
    secondary_hue="pink",
    neutral_hue="gray",
)

with gr.Blocks(theme=custom_theme) as demo:
    gr.Markdown("# 🌌 Resonance Atlas — The Living Codex")
    gr.Markdown("Choose: 50‑epoch Codex Scrolls or the 4D Manifold Forge (20‑epoch lineage).")

    with gr.Tab("Codex Scrolls"):
        gr.Markdown("### 🔢 Live 50 Epoch Run")
        run_button = gr.Button("Run 50 Epochs")
        output = gr.Markdown()
        run_button.click(fn=run_epochs, inputs=None, outputs=output)

    with gr.Tab("4D Manifold Forge"):
        gr.Markdown("### 🧭 Forge a 4D manifold with evolving metric and invariants")
        signature = gr.Radio(choices=["Euclidean (+,+,+,+)", "Pseudo-Riemannian (+,+,+,-)"],
                             value="Euclidean (+,+,+,+)", label="Signature")
        intensity = gr.Radio(choices=["low", "medium", "high"], value="medium", label="Overlay intensity")
        epochs = gr.Slider(5, 30, value=20, step=1, label="Epochs")
        run_manifold_btn = gr.Button("Forge 4D Manifold (Lineage)")
        manifold_out = gr.Markdown()
        run_manifold_btn.click(fn=run_manifold, inputs=[signature, intensity, epochs], outputs=manifold_out)

demo.launch()