File size: 8,632 Bytes
6d6b8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
"""

This module provides quantum-inspired optimization algorithms for enhanced performance.

"""

try:
    import numpy as np
except Exception:
    np = None
    import math

from typing import List, Dict, Any, Callable, Optional, Tuple

class QuantumInspiredOptimizer:
    def __init__(self):
        self.population_size = 50
        self.num_qubits = 32
        self.max_iterations = 100
        self.optimization_history = []
        self.best_solution = None
        self.best_fitness = float('-inf')

    def optimize(self, objective_function: Callable[[np.ndarray], float], 

                constraints: Optional[List[Dict[str, Any]]] = None) -> Dict[str, Any]:
        """

        Perform quantum-inspired optimization.

        

        Args:

            objective_function: The function to optimize

            constraints: Optional list of constraint dictionaries

            

        Returns:

            Optimization results

        """
        # Initialize quantum population
        population = self._initialize_quantum_population()
        
        for iteration in range(self.max_iterations):
            # Measure quantum states
            classical_solutions = self._measure_quantum_states(population)
            
            # Apply constraints if any
            if constraints:
                classical_solutions = self._apply_constraints(classical_solutions, constraints)
            
            # Evaluate fitness
            fitness_values = [objective_function(solution) for solution in classical_solutions]
            
            # Update best solution
            if np is not None:
                current_best_idx = int(np.argmax(fitness_values))
            else:
                current_best_idx = int(max(range(len(fitness_values)), key=lambda i: fitness_values[i]))
            if fitness_values[current_best_idx] > self.best_fitness:
                self.best_fitness = fitness_values[current_best_idx]
                self.best_solution = classical_solutions[current_best_idx]
            
            # Apply quantum gates
            population = self._apply_quantum_gates(population, fitness_values)
            
            # Store iteration history
            self.optimization_history.append({
                "iteration": iteration,
                "best_fitness": self.best_fitness,
                "population_diversity": self._calculate_diversity(classical_solutions)
            })
            
        return {
            "best_solution": self.best_solution,
            "best_fitness": self.best_fitness,
            "convergence": self.optimization_history,
            "final_population": self._measure_quantum_states(population)
        }

    def _initialize_quantum_population(self) -> np.ndarray:
        """

        Initialize the quantum population with superposition states.

        """
        if np is not None:
            # Create population of quantum individuals
            population = np.zeros((self.population_size, self.num_qubits, 2), dtype=np.complex128)
            
            # Initialize in superposition state
            population[:, :, 0] = 1/np.sqrt(2)  # amplitude for |0⟩
            population[:, :, 1] = 1/np.sqrt(2)  # amplitude for |1⟩
        else:
            # Fallback simple population representation (probabilities)
            population = [[ [1/math.sqrt(2), 1/math.sqrt(2)] for _ in range(self.num_qubits)] for _ in range(self.population_size)]
        
        return population

    def _measure_quantum_states(self, population: np.ndarray) -> np.ndarray:
        """

        Perform measurement on quantum states to get classical solutions.

        """
        if np is not None:
            classical_solutions = np.zeros((self.population_size, self.num_qubits))
            
            for i in range(self.population_size):
                # Calculate probabilities
                probabilities = np.abs(population[i, :, 1])**2
                
                # Perform measurement
                classical_solutions[i] = np.random.random(self.num_qubits) < probabilities
                
            return classical_solutions
        else:
            import random
            classical_solutions = []
            for i in range(self.population_size):
                probs = [abs(complex(pair[1]))**2 for pair in population[i]]
                classical_solutions.append([1 if random.random() < p else 0 for p in probs])
            return classical_solutions

    def _apply_quantum_gates(self, population: np.ndarray, fitness_values: List[float]) -> np.ndarray:
        """

        Apply quantum gates to update the quantum states.

        """
        # Normalize fitness values
        if np is not None:
            fitness_normalized = np.array(fitness_values)
            fitness_normalized = (fitness_normalized - np.min(fitness_normalized)) / \
                               (np.max(fitness_normalized) - np.min(fitness_normalized) + 1e-10)
            
            # Quantum rotation gate
            theta = np.pi * fitness_normalized[:, np.newaxis] / 2
            
            # Apply rotation
            for i in range(self.population_size):
                rotation_matrix = np.array([
                    [np.cos(theta[i]), -np.sin(theta[i])],
                    [np.sin(theta[i]), np.cos(theta[i])]
                ])
                
                population[i] = np.einsum('ij,kj->ki', rotation_matrix, population[i])
        else:
            # fitness_normalized already computed by caller
            theta = None
            theta = [math.pi * f / 2 for f in fitness_normalized]
            
            # Simple perturbation fallback
            for i in range(self.population_size):
                for q in range(self.num_qubits):
                    amp0, amp1 = population[i][q]
                    # rotate amplitudes slightly based on theta
                    t = theta[i]
                    new0 = amp0*math.cos(t) - amp1*math.sin(t)
                    new1 = amp0*math.sin(t) + amp1*math.cos(t)
                    population[i][q] = [new0, new1]
            
        return population

    def _apply_constraints(self, solutions: np.ndarray, constraints: List[Dict[str, Any]]) -> np.ndarray:
        """

        Apply constraints to classical solutions.

        """
        constrained_solutions = solutions.copy()
        
        for constraint in constraints:
            constraint_type = constraint.get("type", "")
            
            if constraint_type == "bound":
                lower = constraint.get("lower", 0)
                upper = constraint.get("upper", 1)
                constrained_solutions = np.clip(constrained_solutions, lower, upper)
                
            elif constraint_type == "sum":
                target_sum = constraint.get("target", 1)
                current_sums = np.sum(constrained_solutions, axis=1)
                for i in range(len(constrained_solutions)):
                    if current_sums[i] != 0:  # Avoid division by zero
                        constrained_solutions[i] *= target_sum / current_sums[i]
                        
        return constrained_solutions

    def _calculate_diversity(self, population: np.ndarray) -> float:
        """

        Calculate diversity of the population.

        """
        return np.mean([
            np.mean(np.abs(p1 - p2))
            for i, p1 in enumerate(population)
            for p2 in population[i+1:]
        ])

    def get_optimization_history(self) -> List[Dict[str, Any]]:
        """

        Get the history of optimization progress.

        """
        return self.optimization_history

    def reset(self):
        """

        Reset the optimizer state.

        """
        self.optimization_history = []
        self.best_solution = None
        self.best_fitness = float('-inf')

    def get_quantum_state(self) -> Dict[str, Any]:
        """

        Get the current quantum state information.

        """
        if not self.optimization_history:
            return {"status": "not_initialized"}
            
        return {
            "iterations_completed": len(self.optimization_history),
            "current_best_fitness": self.best_fitness,
            "convergence_trend": [h["best_fitness"] for h in self.optimization_history],
            "diversity_trend": [h["population_diversity"] for h in self.optimization_history]
        }