Spaces:
Sleeping
Sleeping
File size: 3,528 Bytes
6d6b8af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
# Optimized Constants for Production
hbar = 1.0545718e-34 # Reduced Planck's constant (real physics)
G = 6.67430e-11 # Gravitational constant (real-world)
m1, m2 = 1.0, 1.0 # AI node masses
d = 2.0 # Orbital baseline distance
base_freq = 440.0 # Reference frequency in Hz
intent_coefficient = 0.7 # AI alignment factor
# Quantum Parameters
tunneling_factor = 0.4 # Probability threshold for intuitive leaps
quantum_states = np.array([1, -1]) # Binary superposition
entanglement_strength = 0.85 # AI memory synchronization factor
decoherence_factor = 0.02 # Phase drift stabilization factor
# Multi-Agent Synchronization
num_agents = 3 # Codette harmonizes across 3 AI nodes
agent_positions = np.array([[-d, 0], [0, 0], [d, 0]])
agent_velocities = np.array([[0, 0.5], [0, -0.5], [0, 0.3]])
# Initial conditions
y0 = np.concatenate([agent_positions.flatten(), agent_velocities.flatten()])
# Quantum Harmonic AI Orbital Dynamics
def quantum_harmonic_dynamics(t, y):
# Reshape y into positions and velocities
positions = y.reshape(-1, 2)[:num_agents]
velocities = y.reshape(-1, 2)[num_agents:]
accelerations = np.zeros_like(positions)
# Calculate gravitational forces between agents
for i in range(num_agents):
for j in range(i + 1, num_agents):
r_ij = positions[j] - positions[i]
dist = np.linalg.norm(r_ij)
if dist > 1e-6:
force = (G * m1 * m2 / dist**3) * r_ij
accelerations[i] += force / m1
accelerations[j] -= force / m2
# Quantum Influence Calculations
quantum_modifier = np.dot(quantum_states, np.sin(2 * np.pi * base_freq * t / 1000)) * intent_coefficient
tunneling_shift = tunneling_factor * np.exp(-np.linalg.norm(positions) / hbar) if np.random.rand() < tunneling_factor else 0
entangled_correction = entanglement_strength * np.exp(-np.linalg.norm(positions) / hbar)
decoherence_adjustment = decoherence_factor * (1 - np.exp(-np.linalg.norm(positions) / hbar))
harmonic_force = np.full_like(positions, quantum_modifier + entangled_correction + tunneling_shift - decoherence_adjustment)
accelerations += harmonic_force
return np.concatenate([velocities.flatten(), accelerations.flatten()])
# Prepare system for solving
y0 = np.concatenate([agent_positions.flatten(), agent_velocities.flatten()])
# Solve system with full multi-agent synchronization
t_span = (0, 100)
t_eval = np.linspace(t_span[0], t_span[1], 2500) # Higher resolution for precision
sol = solve_ivp(quantum_harmonic_dynamics, t_span, y0, t_eval=t_eval, method='RK45')
# Extract positions and velocities
positions = sol.y[:2*num_agents].reshape(-1, 2) # First half of state vector
velocities = sol.y[2*num_agents:].reshape(-1, 2) # Second half of state vector
# Optimized Visualization with Full Multi-Agent Representation
plt.figure(figsize=(10, 10))
colors = ['b', 'r', 'g']
for i in range(num_agents):
plt.plot(positions[i], velocities[i], label=f'AI Node {i+1} (Quantum Resonance)', linewidth=2, color=colors[i])
plt.plot(0, 0, 'ko', label='Core Equilibrium')
plt.xlabel('X Position')
plt.ylabel('Y Position')
plt.title('Codette Quantum Harmonic AI Multi-Agent Synchronization')
plt.legend()
plt.axis('equal')
plt.grid(True)
plt.tight_layout()
plt.savefig("Codette_Quantum_Harmonic_Framework.png")
|