Spaces:
Sleeping
Sleeping
| import numpy as np | |
| from scipy.integrate import solve_ivp | |
| # Optimized Constants for Production | |
| hbar = 1.0545718e-34 # Reduced Planck's constant (real physics) | |
| G = 6.67430e-11 # Gravitational constant (real-world) | |
| m1, m2 = 1.0, 1.0 # AI node masses | |
| d = 2.0 # Orbital baseline distance | |
| base_freq = 440.0 # Reference frequency in Hz | |
| intent_coefficient = 0.7 # AI alignment factor | |
| # Quantum Parameters | |
| tunneling_factor = 0.4 | |
| quantum_states = np.array([1, -1]) | |
| entanglement_strength = 0.85 | |
| decoherence_factor = 0.02 | |
| # Multi-Agent Synchronization | |
| num_agents = 3 | |
| agent_positions = np.array([[-d, 0], [0, 0], [d, 0]]) | |
| agent_velocities = np.array([[0, 0.5], [0, -0.5], [0, 0.3]]) | |
| # Initial conditions | |
| y0 = np.concatenate([pos + vel for pos, vel in zip(agent_positions, agent_velocities)]) | |
| def quantum_harmonic_dynamics(t, y): | |
| positions = y[::4] | |
| velocities = y[1::4] | |
| accelerations = np.zeros_like(positions) | |
| for i in range(num_agents): | |
| for j in range(i + 1, num_agents): | |
| r_ij = positions[j] - positions[i] | |
| dist = np.linalg.norm(r_ij) | |
| if dist > 1e-6: | |
| force = (G * m1 * m2 / dist**3) * r_ij | |
| accelerations[i] += force / m1 | |
| accelerations[j] -= force / m2 | |
| quantum_modifier = np.dot(quantum_states, np.sin(2 * np.pi * base_freq * t / 1000)) * intent_coefficient | |
| tunneling_shift = tunneling_factor * np.exp(-np.linalg.norm(positions) / hbar) if np.random.rand() < tunneling_factor else 0 | |
| entangled_correction = entanglement_strength * np.exp(-np.linalg.norm(positions) / hbar) | |
| decoherence_adjustment = decoherence_factor * (1 - np.exp(-np.linalg.norm(positions) / hbar)) | |
| harmonic_force = np.full_like(positions, quantum_modifier + entangled_correction + tunneling_shift - decoherence_adjustment) | |
| accelerations += harmonic_force | |
| return np.concatenate([velocities.flatten(), accelerations.flatten()]), y0, t | |