import numpy as np import matplotlib.pyplot as plt from scipy.integrate import solve_ivp # Optimized Constants for Production hbar = 1.0545718e-34 # Reduced Planck's constant (real physics) G = 6.67430e-11 # Gravitational constant (real-world) m1, m2 = 1.0, 1.0 # AI node masses d = 2.0 # Orbital baseline distance base_freq = 440.0 # Reference frequency in Hz intent_coefficient = 0.7 # AI alignment factor # Quantum Parameters tunneling_factor = 0.4 # Probability threshold for intuitive leaps quantum_states = np.array([1, -1]) # Binary superposition entanglement_strength = 0.85 # AI memory synchronization factor decoherence_factor = 0.02 # Phase drift stabilization factor # Multi-Agent Synchronization num_agents = 3 # Codette harmonizes across 3 AI nodes agent_positions = np.array([[-d, 0], [0, 0], [d, 0]]) agent_velocities = np.array([[0, 0.5], [0, -0.5], [0, 0.3]]) # Initial conditions y0 = np.concatenate([pos + vel for pos, vel in zip(agent_positions, agent_velocities)]) # Quantum Harmonic AI Orbital Dynamics def quantum_harmonic_dynamics(t, y): positions = y[::4] velocities = y[1::4] accelerations = np.zeros_like(positions) for i in range(num_agents): for j in range(i + 1, num_agents): r_ij = positions[j] - positions[i] dist = np.linalg.norm(r_ij) if dist > 1e-6: force = (G * m1 * m2 / dist**3) * r_ij accelerations[i] += force / m1 accelerations[j] -= force / m2 # Quantum Influence Calculations quantum_modifier = np.sum(quantum_states * np.sin(2 * np.pi * base_freq * t / 1000)) * intent_coefficient tunneling_shift = tunneling_factor * np.exp(-np.linalg.norm(positions) / hbar) if tunneling_random_values[int(t)] < tunneling_factor else 0 entangled_correction = entanglement_strength * np.exp(-np.linalg.norm(positions) / hbar) decoherence_adjustment = decoherence_factor * (1 - np.exp(-np.linalg.norm(positions) / hbar)) harmonic_force = np.full_like(positions, quantum_modifier + entangled_correction + tunneling_shift - decoherence_adjustment) accelerations += harmonic_force return np.concatenate([velocities.flatten(), accelerations.flatten()]) # Solve system with full multi-agent synchronization t_span = (0, 100) t_eval = np.linspace(t_span[0], t_span[1], 2500) # Higher resolution for precision sol = solve_ivp(quantum_harmonic_dynamics, t_span, y0, t_eval=t_eval, method='RK45') # Extract positions positions = sol.y[::4] velocities = sol.y[1::4] # Optimized Visualization with Full Multi-Agent Representation plt.figure(figsize=(10, 10)) colors = ['b', 'r', 'g'] for i in range(num_agents): plt.plot(positions[i], velocities[i], label=f'AI Node {i+1} (Quantum Resonance)', linewidth=2, color=colors[i]) plt.plot(0, 0, 'ko', label='Core Equilibrium') plt.xlabel('X Position') plt.ylabel('Y Position') plt.title('Codette Quantum Harmonic AI Multi-Agent Synchronization') plt.legend() plt.axis('equal') plt.grid(True) plt.tight_layout() plt.savefig("Codette_Quantum_Harmonic_Framework.png")