Spaces:
Sleeping
Sleeping
File size: 5,737 Bytes
2d345bb dad91e4 2d345bb 43d419f 2d345bb 9084ecd 2d345bb 9084ecd 2d345bb 9084ecd 2d345bb 9084ecd 2d345bb 68d5ee3 9084ecd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import classification_report, accuracy_score
import matplotlib.pyplot as plt
import seaborn as sns
# Page config
st.set_page_config(page_title="Explore SVM Algorithm", layout="wide")
st.title("π Support Vector Machine (SVM)")
# -----------------------------------
# Theory Section
# -----------------------------------
st.markdown("""
## π€ What is a Support Vector Machine (SVM)?
SVM is a powerful supervised learning algorithm used for classification and regression.
It works by finding a hyperplane that best separates the classes in the feature space.
**Key Ideas:**
- Maximizes the margin between different classes
- Effective in high-dimensional spaces
- Can use **kernel tricks** to handle non-linear classification
---
## βοΈ How SVM Works
1. Find the optimal hyperplane that separates classes.
2. Use **support vectors** β data points closest to the hyperplane.
3. Maximize the margin between these support vectors.
4. Use **kernel functions** to map inputs to higher dimensions if data isn't linearly separable.
**Kernel Types:**
- *Linear*: Straight line separation
- *RBF (Gaussian)*: Circular, good for complex boundaries
- *Polynomial*: Curved boundaries
---
""")
# -----------------------------------
# Load Dataset
# -----------------------------------
st.subheader("πΌ Try SVM on the Iris Dataset")
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['target'] = iris.target
df['species'] = df['target'].apply(lambda x: iris.target_names[x])
st.dataframe(df.head(), use_container_width=True)
# -----------------------------------
# Model Controls
# -----------------------------------
kernel = st.radio("Select SVM Kernel", ["linear", "rbf", "poly"])
C = st.slider("Select Regularization Parameter (C)", 0.01, 10.0, value=1.0)
# Prepare Data
X = df.drop(columns=["target", "species"])
y = df['target']
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# Train SVM
svm_model = SVC(kernel=kernel, C=C, probability=True, random_state=42)
svm_model.fit(X_train, y_train)
svm_pred = svm_model.predict(X_test)
svm_acc = accuracy_score(y_test, svm_pred)
st.success(f"β
SVM Accuracy: {svm_acc*100:.2f}%")
# -----------------------------------
# Classification Report
# -----------------------------------
svm_report = classification_report(y_test, svm_pred, target_names=iris.target_names)
st.markdown("### π SVM Classification Report")
st.text(svm_report)
# -----------------------------------
# Visualize Decision Boundaries
# -----------------------------------
st.markdown("### π Visualizing Decision Boundaries (2 Features)")
feature_x = st.selectbox("Feature for X-axis", df.columns[:-2], index=0)
feature_y = st.selectbox("Feature for Y-axis", df.columns[:-2], index=1)
X_vis = df[[feature_x, feature_y]]
X_vis_scaled = scaler.fit_transform(X_vis)
X_train_v, X_test_v, y_train_v, y_test_v = train_test_split(X_vis_scaled, y, test_size=0.2, random_state=42)
model_vis = SVC(kernel=kernel, C=C)
model_vis.fit(X_train_v, y_train_v)
h = .02
x_min, x_max = X_vis_scaled[:, 0].min() - 1, X_vis_scaled[:, 0].max() + 1
y_min, y_max = X_vis_scaled[:, 1].min() - 1, X_vis_scaled[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = model_vis.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
fig, ax = plt.subplots(figsize=(8, 6))
plt.contourf(xx, yy, Z, alpha=0.3)
sns.scatterplot(x=X_vis_scaled[:, 0], y=X_vis_scaled[:, 1], hue=df['species'], palette='deep', ax=ax)
plt.xlabel(feature_x)
plt.ylabel(feature_y)
plt.title("SVM Decision Boundaries")
st.pyplot(fig)
# -----------------------------------
# Downloadable Report
# -----------------------------------
st.markdown("### π₯ Download SVM Report")
st.download_button("π Download Classification Report", data=svm_report, file_name="svm_report.txt")
# -----------------------------------
# Summary
# -----------------------------------
st.markdown("""
---
## π‘ Highlights of SVM:
- Works well for both linear and non-linear problems.
- Excellent performance on small to medium-sized datasets.
- Sensitive to outliers but tunable via regularization.
## π§ When to Use SVM?
Use them when:
- You have a clear margin of separation between classes.
- You're dealing with high-dimensional data.
- You want flexibility via kernels.
---
### π§ Did You Know?
- SVMs are **robust to overfitting**, especially in high-dimensional space.
- The **'C' parameter** controls the trade-off between training error and margin size.
- The **kernel trick** allows SVMs to operate in infinite-dimensional space.
### π Pros & Cons
| Pros | Cons |
|---------------------------------|-------------------------------------|
| Works well on complex boundaries| Slower on large datasets |
| Effective in high-dimensional space | Needs careful parameter tuning |
| Can handle non-linear data | Less interpretable than simpler models |
---
### π Kernel Choice Summary
| Kernel | Use Case |
|-------------|---------------------------------|
| Linear | Simple, linearly separable data |
| RBF | Most common, good for most cases|
| Polynomial | Use if you suspect curved boundaries|
> π― *Tip:* Start with linear, then try RBF if the data isn't linearly separable.
""")
|