File size: 3,914 Bytes
bcf0876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a9a30fb
bcf0876
 
 
 
7559e31
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import numpy as np
from numpy.random import normal
import matplotlib.pyplot as plt

# ---------------------------
# Physical constants
# ---------------------------
g = 9.81
rho = 1.2
Cd = 0.47
r = 0.02
A = np.pi * r**2
m = 0.0027

k_drag = 0.5 * rho * Cd * A / m
k_mag = 4e-4    # Magnus coefficient (tuned)

# Table + net
table_length = 2.74
x_net = table_length / 2
h_net = 0.1525
y_thresh = h_net + r   # clearance threshold


# ---------------------------
# 2D flight ODE
# ---------------------------
def f(state, omega):
    x, y, vx, vy = state
    v = np.sqrt(vx**2 + vy**2)

    ax_drag = -k_drag * v * vx
    ay_drag = -k_drag * v * vy

    ax_mag =   k_mag * omega * vy
    ay_mag =  -k_mag * omega * vx

    return np.array([
        vx,
        vy,
        ax_drag + ax_mag,
        -g + ay_drag + ay_mag
    ])


# ---------------------------
# Single trajectory (NO BOUNCE)
# ---------------------------
def simulate_trajectory(S, theta_deg, omega, dt=0.001, t_max=2.0):
    theta = np.deg2rad(theta_deg)

    # initial conditions
    vx = S * np.cos(theta)
    vy = S * np.sin(theta)
    x, y = 0.0, 0.3     # contact height ~30 cm

    prev_x, prev_y = x, y
    cleared_net = False
    hit_net = False

    for _ in np.arange(0, t_max, dt):

        # ------------- NET CHECK -------------
        if (prev_x - x_net) * (x - x_net) <= 0 and (x != prev_x):
            tau = (x_net - prev_x) / (x - prev_x)
            y_cross = prev_y + tau * (y - prev_y)

            if y_cross <= y_thresh:
                return x_net, "net"      # hit net
            else:
                cleared_net = True

        # ------------- GROUND (TABLE) IMPACT -------------
        if y <= 0:
            # Ball lands
            if x < x_net:
                return x, "undershoot"      # lands on own side
            elif x <= table_length:
                return x, "valid"           # lands on opponent side
            else:
                return x, "overshoot"       # lands beyond table

        # ------------- INTEGRATE (RK4) -------------
        state = np.array([x, y, vx, vy])
        k1 = f(state, omega)
        k2 = f(state + 0.5*dt*k1, omega)
        k3 = f(state + 0.5*dt*k2, omega)
        k4 = f(state + dt*k3, omega)
        state += (dt/6)*(k1 + 2*k2 + 2*k3 + k4)

        prev_x, prev_y = x, y
        x, y, vx, vy = state

        # If ball goes far past table without landing → overshoot
        if x > table_length + 0.5:
            return x, "overshoot"

    return x, "unknown"


# ---------------------------
# Monte Carlo
# ---------------------------
def monte_carlo(n=2000):
    landings = []
    outcomes = {"valid": 0, "net": 0, "undershoot": 0, "overshoot": 0}

    for _ in range(n):
        # Random shot parameters
        S = normal(8.0, 0.4)
        ang = normal(12.0, 2.0)
        spin = normal(150, 20)

        x_land, outcome = simulate_trajectory(S, ang, spin)

        landings.append(x_land)
        outcomes[outcome] += 1

    return np.array(landings), outcomes


# ---------------------------
# Run + Plot
# ---------------------------
landings, outcomes = monte_carlo(2000)

print(outcomes)
print("Valid shot probability:", outcomes["valid"] / 2000)

plt.hist(landings, bins=80, density=True)
plt.axvline(x_net, color='r', linestyle='--', label='Net')
plt.axvline(table_length, color='k', linestyle='--', label="End of table")
plt.title("Landing distribution (PDF approx)")
plt.xlabel("Landing x-position (m)")
plt.ylabel("Probability density")
plt.legend()
plt.show()
import gradio as gr

def run_sim():
    landings, outcomes = monte_carlo(2000)

    result_str = f"""
Valid: {outcomes['valid']}
Net: {outcomes['net']}
Undershoot: {outcomes['undershoot']}
Overshoot: {outcomes['overshoot']}
"""

    return result_str

demo = gr.Interface(
    fn=run_sim,
    inputs=[],
    outputs="text",
    title="Table Tennis Monte Carlo Simulator"
)

demo.launch()