File size: 25,619 Bytes
e428742
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
import streamlit as st
import pandas as pd
from constants import airline_name
import seaborn as sns
import matplotlib.pyplot as plt
from vega_datasets import data
import altair as alt

@st.cache
def load_airline_data():
    path = "data/airline.csv"
    return pd.read_csv(path)

@st.cache
def load_time_data():
    path = "data/time.csv"
    return pd.read_csv(path)

@st.cache
def load_distance_data():
    path = "data/distance.csv"
    return pd.read_csv(path)

@st.cache
def load_destination_data():
    path = "data/destination.csv"
    return pd.read_csv(path)

@st.cache
def load_airline_time_data():
    path = "data/airline_time.csv"
    return pd.read_csv(path)

@st.cache
def load_route_data():
    path = "data/routes.csv"
    return pd.read_csv(path)

@st.cache
def load_origin_data():
    path = "data/origin.csv"
    return pd.read_csv(path)

def vis_airline_company():
    st.markdown(
        """
        ## Chapter I. Check out factors that matter
        """
        )
    st.markdown(
        """
        ### 1. Airline company matters to flight delay!
        """
        )
    st.markdown(
        """
        Flight delay rate is an important factor when measuring the reliability of an airline company. \n
        **"Which airline has the worst/best delay rate in 2021?"** \n
        In this part, we have selected the top 10 airlines with the most flights in 2021 and would like to explore how they behave in dealing with flight delay issues. \n
        Firstly, we compared the delay time in a box plot. The median and the interquartile range in each box well demonstrate the performance of each airline in a flight delay. Alaska Airlines, Southwest Airlines, and Delta Airlines are the best 3 performers. Some airlines like Skywest Airlines and JetBlue Airlines do need to pay more attention to their flight delay issues.
        """
        )

    
    df = load_airline_data()
    airlines = st.multiselect("Please choose airline companies",
                              options=[key + ':' + value for key, value in airline_name.items()],
                              default=["WN:Southwest Airlines", "AA:American Airlines",
                                       "DL:Delta Airlines", "UA:United Airlines", "B6:JetBlue Airlines"],
                              key='airlines')
    airlines_abbr = [x.split(":")[0] for x in airlines]
    df_airline = df[df["OP_UNIQUE_CARRIER"].isin(airlines_abbr)]

    def delay_type(x):
        if x <= 20:
            return 0
        elif x <= 60:
            return 1
        return 2
    df_airline["TYPE"] = df_airline["ARR_DELAY"].apply(delay_type)
    
    fig2 = plt.figure(figsize=(10, len(airlines_abbr) * 1.5))
    ax = sns.boxplot(data=df_airline, x="ARR_DELAY", y="OP_UNIQUE_CARRIER", showfliers=False, width=0.4, palette='Spectral')
    ax.yaxis.label.set_visible(False)
    # change the plot box color
    for i, artist in enumerate(ax.patches):
        # Set the linecolor on the artist to the facecolor, and set the facecolor to None
        col = artist.get_facecolor()
        artist.set_edgecolor(col)  
    
    new_labels = [airline_name[x.get_text()] for x in ax.get_yticklabels()]
    ax.set_yticklabels(new_labels)
    plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
    plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
    plt.xlabel('Delay time (minutes)', fontsize=16, weight='bold', labelpad=10)
    st.pyplot(fig2)
    
    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Alaska Airlines, Southwest Airlines, and Delta Airlines are the best 3 performers.** \n
        - **Some airlines like Skywest Airlines and JetBlue Airlines do need to pay more attention to their flight delay issues.** \n
        \n
        """
        )  
    
    st.markdown(
        """
        Based on the box plot, we identified that the delay time could be categorized into <20 minutes, 20-60 minutes, and >60 minutes. If it is smaller than 20, it is approximately on time. If it is between 20 and 60, it is a small delay that most people can tolerate. If it is larger than 60, the flight encounters a serious delay. \n
        With the new categories of delay, it is easy to observe that **the proportion of delays varies from airline to airline.**
        """
        )
    
    fig1 = plt.figure(figsize=(10, len(airlines_abbr)*1.5))
    ax = sns.countplot(data=df_airline, y="OP_UNIQUE_CARRIER", hue="TYPE", palette='Spectral')
    ax.yaxis.label.set_visible(False)
    new_labels = [airline_name[x.get_text()] for x in ax.get_yticklabels()]
    ax.set_yticklabels(new_labels)
    plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
    plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
    new_legend = plt.legend()
    new_legend.get_texts()[0].set_text("on time (<20 min)")
    new_legend.get_texts()[1].set_text("small delay (20~60 min)")
    new_legend.get_texts()[2].set_text("large delay (>60 min)")
    plt.xlabel('Number of flights', fontsize=16, weight='bold', labelpad=10)
    st.pyplot(fig1)
    
    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Airline companies behave very much differently in dealing with flight delay problems. It is safe to deduce that choosing an airline company would influence flight delays.** \n
        - **Some airlines like JetBlue Airlines behave badly. They have a relatively low on-time rate and a relatively high large delay rate.** \n
        - **Although SouthWest Airlines has the largest number of flight delays, these delays are mainly small delays and the company maintains a pretty good on-time rate** \n
        \n
        """
        )  

def vis_flight_time():
    st.markdown(
        """
        ### 2. Prepared to be delayed when flying in summer and December
        """
        )
    st.markdown(
        """
        Next, we would like to sketch a box plot to identify the relationship between delay time and flight departure time. Here, we allow users to select departure time by Quarter, Month, and Day of Week. 
        """
        )
 
    time_scale = st.radio("Please select a time scale",
                          ("Quarter", "Month", "Day of Week"))
    df_time = load_time_data()
    if time_scale == "Quarter":
        fig = plt.figure(figsize=(10, 4*1.5))
        ax = sns.boxplot(data=df_time, x="ARR_DELAY", y="QUARTER", showfliers=False, orient="h", width=0.4, palette='Spectral')
        # change the plot box color
        for i, artist in enumerate(ax.patches):
            # Set the linecolor on the artist to the facecolor, and set the facecolor to None
            col = artist.get_facecolor()
            artist.set_edgecolor(col)   
        plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.ylabel('Quarter', fontsize=16, weight='bold', labelpad=10)
        plt.xlabel('Delay time (minutes)', fontsize=16, weight='bold', labelpad=10)
        st.pyplot(fig)
    elif time_scale == "Month":
        st.write("It can be observed that summer is the peak season for flight delays.")
        fig = plt.figure(figsize=(10, 12 * 1))
        ax = sns.boxplot(data=df_time, x="ARR_DELAY", y="MONTH", showfliers=False, orient="h", width=0.4, palette='Spectral')
        for i, artist in enumerate(ax.patches):
            # Set the linecolor on the artist to the facecolor, and set the facecolor to None
            col = artist.get_facecolor()
            artist.set_edgecolor(col)  
        plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.ylabel('Month', fontsize=16, weight='bold', labelpad=10)
        plt.xlabel('Delay time (minutes)', fontsize=16, weight='bold', labelpad=10)
        st.pyplot(fig)
    else:
        st.write("It can be observed that it is more likely to encounter a flight delay on Sunday.")
        fig = plt.figure(figsize=(10, 7 * 1))
        ax = sns.boxplot(data=df_time, x="ARR_DELAY", y="DAY_OF_WEEK", showfliers=False, orient="h", width=0.4, palette='Spectral')
        for i, artist in enumerate(ax.patches):
            # Set the linecolor on the artist to the facecolor, and set the facecolor to None
            col = artist.get_facecolor()
            artist.set_edgecolor(col)  
        plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
        plt.ylabel('Day of Week', fontsize=16, weight='bold', labelpad=10)
        plt.xlabel('Delay time (minutes)', fontsize=16, weight='bold', labelpad=10)
        st.pyplot(fig)
    
    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Generally, a long flight delay is more likely to happen in Quarter 2 & 3 than in Quarter 1 & 4.** \n
        - **However, there is also a relatively long flight delay in December, which might be caused by the holiday season.** \n
        - **People are more likely to experience a long flight delay on Sundays possibly due to a high volume of people needing to go back to work from the weekends.** \n
        \n
        """
        )  

def vis_flight_distance():
    st.markdown(
        """
        ### 3. Likely to be 30-min delay regardless of the distance
        """
        )
    st.markdown(
        """
        Next, we would like to sketch a binned scattered plot to identify the relationship between delay time and flight distance. The data points in the plot are grouped into bins with a circle in each bin to represent the number of flights in that bin and its percentage of the total number of flights.
        """
        )

    data_type = st.radio("Please select a data type",
                          ("Amount", "Percentage"))
    df = load_distance_data()
    df_distance = df[["DISTANCE", "ARR_DELAY"]]
    def delay_type(x):
        if x <= 20:
            return 0
        elif x <= 60:
            return 1
        return 2
    df_distance["TYPE"] = df_distance["ARR_DELAY"].apply(delay_type)
    df_distance = df_distance[df_distance["ARR_DELAY"] < 120]
    df_distance = df_distance[df_distance["DISTANCE"] < 2000]
    df_distance = df_distance.sample(50000, random_state=0)

    # fig = plt.figure(figsize=(10, 10))
    # ax = sns.histplot(data=df_distance, x="ARR_DELAY", y="DISTANCE", bins=20)
    # plt.setp(ax.get_yticklabels(), fontsize=10, weight='bold', rotation=0)
    # plt.setp(ax.get_xticklabels(), fontsize=10, weight='bold', rotation=0)
    # plt.ylabel('Flight Distance (miles)', fontsize=16, weight='bold', labelpad=10)
    # plt.xlabel('Delay time (minutes)', fontsize=16, weight='bold', labelpad=10)
    # st.pyplot(fig)

    if data_type == "Percentage":
        fig1 = alt.Chart(df_distance).transform_bin(
            "ARR_DELAY_bin", field="ARR_DELAY"
        ).transform_joinaggregate(
            total="count()",
            groupby=["ARR_DELAY_bin"]
        ).transform_joinaggregate(
            in_group="count()",
            groupby=["ARR_DELAY_bin", "DISTANCE"]
        ).transform_calculate(
            percentage=alt.datum.in_group / alt.datum.total
        ).mark_circle(color= '#66c2a5').encode(
            alt.X("ARR_DELAY:Q", bin=True, axis=alt.Axis(title="Delay Time (minutes)", titleFontSize=20)),
            alt.Y("DISTANCE", bin=True, axis=alt.Axis(title="Flight Distance (miles)", titleFontSize=20)),
            alt.Size("percentage:Q", legend=alt.Legend(format='%', title='Percentage', titleFontSize=15)),
            tooltip=[alt.Tooltip('percentage:Q')]
        )
        fig1.width = 800
        fig1.height = 400
        st.altair_chart(fig1)
    else:
        fig2 = alt.Chart(df_distance).mark_circle(color= '#66c2a5').encode(
            alt.X("ARR_DELAY:Q", bin=True, axis=alt.Axis(title="Delay Time (minutes)", titleFontSize=20)),
            alt.Y("DISTANCE:Q", bin=True, axis=alt.Axis(title="Flight Distance (miles)", titleFontSize=20)),
            size="count()",
            tooltip=["count()"]
        )
        fig2.width = 800
        fig2.height = 400
        st.altair_chart(fig2)
    
    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Flights usually delay around 30 minutes regardless of the travel distance.** \n
        - **Surprisingly, long distance does not have a longer delay time, which might be due to the flights can fly faster to make up the lost time and mitigate the arrival delay.** \n
        \n
        """
        )  
 

def origin_map():
    states = alt.topo_feature(data.us_10m.url, feature='states')
    base = alt.Chart(states).mark_geoshape(fill='lightgray', stroke='black', strokeWidth=0.5)
    df = load_origin_data()
    ansi = pd.read_csv('https://www2.census.gov/geo/docs/reference/state.txt', sep='|')
    ansi.columns = ['id', 'abbr', 'state', 'statens']
    ansi = ansi[['id', 'state', 'abbr']]
    geo_data = df.groupby('ORIGIN_STATE')['ARR_DELAY'].mean().reset_index()
    geo_data.columns = ['abbr', 'Delay Time']
    geo_data = pd.merge(geo_data, ansi, how='left', on='abbr')
    alt_fig = alt.Chart(states).mark_geoshape().encode(
        color = alt.Color('Delay Time:Q', scale=alt.Scale(scheme='lightmulti')),
        tooltip=['state:N', alt.Tooltip('Delay Time:Q')]
    ).transform_lookup(
        lookup='id',
        from_=alt.LookupData(geo_data, 'id', ['Delay Time','state'])
    ).project(
        type='albersUsa'
    ).properties(
        width=800
    )
    return base + alt_fig


def vis_flight_origin():
    st.markdown(
        """
        ### 4. Peace in mind when flying ‘In-N-Out’ on the West Coast
        """
        )
    st.markdown(
        """
        We utilized choropleth maps to visualize the average flight delay time in different departure states and destination states. The closer the color is to red, the longer the delay in that state.
        """
        )
    st.markdown(
        """
        **Flight Departure:**
        """
        )
    st.altair_chart(origin_map()) 

def destination_map():
    states = alt.topo_feature(data.us_10m.url, feature='states')
    base = alt.Chart(states).mark_geoshape(fill='lightgray', stroke='black', strokeWidth=0.5)
    df = load_destination_data()
    ansi = pd.read_csv('https://www2.census.gov/geo/docs/reference/state.txt', sep='|')
    ansi.columns = ['id', 'abbr', 'state', 'statens']
    ansi = ansi[['id', 'state', 'abbr']]
    geo_data = df.groupby('DEST_STATE')['ARR_DELAY'].mean().reset_index()
    geo_data.columns = ['abbr', 'Delay Time']
    geo_data = pd.merge(geo_data, ansi, how='left', on='abbr')
    alt_fig = alt.Chart(states).mark_geoshape().encode(
        color = alt.Color('Delay Time:Q', scale=alt.Scale(scheme='lightmulti')),
        tooltip=['state:N', alt.Tooltip('Delay Time:Q')]
    ).transform_lookup(
        lookup='id',
        from_=alt.LookupData(geo_data, 'id', ['Delay Time','state'])
    ).project(
        type='albersUsa'
    ).properties(
        width=800
    )
    return base + alt_fig

def vis_flight_destination():
    st.markdown(
        """
        **Flight Destination:**
        """
        )
    st.altair_chart(destination_map())

    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Departure and arrival flights in North Dakota are likely to be delayed for a longer period of time.** \n
        - **Flights arriving on the West Coast are more likely to be on time.** \n
        - **Flights departing from Washington and Georgia are more likely to be on time.** \n
        \n
        """
        ) 
    st.markdown(
        """
        ### Summary
        """
        )
    st.markdown(
        """
        For this part of the visualization, we mostly employed a single factor and identified that airline company, flight time, and departure/arriving hub are the key factors that correlate with a flight delay. 
        """
        ) 

    st.markdown(
        """
        ## Chapter II. Make a better decision by integrating multiple factors
        """
        )
    st.markdown(
        """
        In this Chapter, we are going to help our users make better decisions by taking multiple factors into consideration.
        """
        )

def vis_flight_delay_distribution_over_time():
    st.markdown(
        """
        ### 1. Watch out for your timing and your carrier
        """
        )
    st.markdown(
        """
        In order to see how timings and airline companies would influence the flight delay together, we would like to use an interactive chart with cross-highlights. We randomly sampled 5000 from the data for efficient computation purposes. Here in the chart, the color indicates the number of flights with the delay time (y-axis) on the given time category (x-axis) for a selected time scale. The size of the circle indicates the percentage (likelihood) of a delay time occurring in each time category. Meanwhile, users can filter an airline by selecting from the bar plot below and see the performance of different airlines.

        """
        )
    scale = st.radio("Please select a time scale",
                          ("Quarter", "Month", "Day of Week"), key='scale')
    st.altair_chart(plot_delay_over_time(scale)) 

    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **Comparing United Airlines with Delta Airlines (with a similar number of flights), we can see United Airlines is more likely to have longer delays than Delta.** \n
        - **Longer delays (350-400min) happen more frequently in December compared to the other months, which might be caused by the holiday season.** \n
        - **The shorter and medium delays (50-300min) happen more frequently in June-August, which might indicate that people travel more often in the summertime.** \n
        - **There are fewer flights from January-April, which might indicate that fewer people choose to travel during this time.** \n
        \n
        """
        ) 


def plot_delay_over_time(scale):

    time_scale_dic = {"Quarter": "QUARTER", "Month": "MONTH", "Day of Week": "DAY_OF_WEEK"}
    airlines = ['WN','AA','OO','DL','UA','B6','YX','NK']
    df_time = load_airline_time_data()
    df_time = df_time[df_time["ARR_DELAY"] < 400]
    df_time = df_time[df_time["OP_UNIQUE_CARRIER"].isin(airlines)]
    df_time = df_time.sample(5000, random_state=0)
    
    pts = alt.selection(type="single", encodings=['x'])
    # "QUARTER" "%s:N"%(time_scale_dic[scale])

    rect = alt.Chart(df_time).mark_rect().encode(
                alt.Y("ARR_DELAY:Q", bin=True),
                alt.X("%s:N"%(time_scale_dic[scale])),
                color = alt.Color("count()", scale=alt.Scale(scheme='lightmulti'))
            ).transform_filter(
                pts
            )
    rect.width = 700
    rect.height = 400

    circle = alt.Chart(df_time).transform_bin(
                "ARR_DELAY_bin", field="ARR_DELAY"
            ).transform_filter(
                pts
            ).transform_joinaggregate(
                total="count()",
                groupby=["ARR_DELAY_bin"]
            ).transform_joinaggregate(
                in_group="count()",
                groupby=["ARR_DELAY_bin", "%s"%(time_scale_dic[scale])]
            ).transform_calculate(
                PERCENT_BY_ARR_DELAY=alt.datum.in_group / alt.datum.total
            ).mark_circle(color= '#66c2a5').encode(
                alt.Y("ARR_DELAY:Q", bin=True, axis=alt.Axis(title="Delay Time (minutes)", titleFontSize=14)),
                alt.X("%s:N"%(time_scale_dic[scale]), axis=alt.Axis(title=scale, titleFontSize=14, labelAngle=0)),
                alt.Size("PERCENT_BY_ARR_DELAY:Q", scale=alt.Scale(range=[0, 2000]), legend=alt.Legend(format='%', title='Percentage')),
                tooltip=["%s:N"%(time_scale_dic[scale]), "count()", alt.Tooltip('PERCENT_BY_ARR_DELAY:Q', format='.2f')]
            )
    circle.width = 700
    circle.height = 400

    bar = alt.Chart(df_time).mark_bar().encode(
        x=alt.X('OP_UNIQUE_CARRIER:N', sort='-y', axis=alt.Axis(title="Operating Carrier", labelAngle=0, titleFontSize=14)),
        y=alt.Y('count()', axis=alt.Axis(titleFontSize=14)),
        color=alt.condition(pts, alt.ColorValue("#5aa6bb"), alt.ColorValue("lightgrey")),
        tooltip=['OP_UNIQUE_CARRIER:N', 'count()']
    ).properties(
        width=750,
        height=200
    ).add_selection(pts)

    fig = alt.vconcat(
        rect + circle,
        bar
    ).resolve_legend(
        color="independent",
        size="independent"
    )
    
    return fig



def vis_flight_delay_distribution_over_location():
    st.markdown(
        """
        ### 2. Worry less when traveling between big hubs
        """
        )
    st.markdown(
        """
        Now that we understand how the timings and airline companies could influence the flight delay, we would like to explore the relationship between average delay time and the route of the flights. To better visualize the frequency of the route, we also included the number of flights on each route consideration. \n
        The circle indicates the number of flights that departed from this airport. The larger circle means the larger airport hub. The edge indicates the flight between the two airports. The thickness of the edge indicates the number of flights between the two airports and the color of the edge indicates the average delay time between the two airports. Randomly sample 5000 from the data for efficient computation purposes.
        """
        )
    st.altair_chart(plot_delay_over_location()) 
    st.markdown(
        """
        ##### Insights
        """
        )
    st.markdown(
        """
        - **The average delay time of flights between two big hubs is shorter than that of flights from a big hub to a smaller airport, which might be due to the airports prioritizing flights between two big hubs. For example, hovering over DEN, we could see that the longest average delays are among small airports (circles with a smaller size).** \n
        - **Smaller airports usually only connect to a few big hubs and are likely to have longer average delay times. For example, airport CRW only have flights to ORD and ATL, both having large average delay time.** \n
        \n
        """
        ) 
    st.markdown(
        """
        ### Summary
        """
        )
    st.markdown(
        """
        Flight carrier, flying time, and flying origin and destination are the most important factors that impact flight delay. On the other hand, the traveling distance does not impact the delay.
        """
        )
    st.markdown(
        """
        #### Now, are you more aware of what flights to choose to avoid delays? \n
        #### Don't worry if you are still not sure, we also have another tool for you!
        """
        )


def plot_delay_over_location():
    df_routes = load_route_data()
    df_routes = df_routes[df_routes["ARR_DELAY"] < 400]
    df_routes = df_routes.sample(5000, random_state=0)
    
    states = alt.topo_feature(data.us_10m.url, feature="states")

    background = alt.Chart(states).mark_geoshape(
        fill="#ecf4f6",
        stroke="white"
    ).properties(
        width=800,
        height=500
    ).project("albersUsa")

    flights_airport = df_routes
    select_city = alt.selection_single(
        on="mouseover", nearest=True, fields=["ORIGIN"], empty="none"
    )

    connections = alt.Chart(flights_airport
    ).transform_filter(
        (alt.datum.ORIGIN_STATE != "PR") & (alt.datum.ORIGIN_STATE != "VI") & (alt.datum.DEST_STATE != "PR") & (alt.datum.DEST_STATE != "VI")
    ).transform_joinaggregate(
        Count="count()",
        Avg_Delay='mean(ARR_DELAY)',
        groupby=["ORIGIN", "DEST"]
    ).mark_rule(opacity=0.5).encode(
        latitude="ORIGIN_LAT:Q",
        longitude="ORIGIN_LONG:Q",
        latitude2="DEST_LAT:Q",
        longitude2="DEST_LONG:Q",
        size=alt.Size("Count:Q", scale=alt.Scale(range=[0, 500]), legend=alt.Legend(title='Number of Flights')),
        color=alt.Color("Avg_Delay:Q", scale=alt.Scale(scheme='lightmulti', domain=[0, 200]), legend=alt.Legend(title='Average Delay (min)'))
    ).transform_filter(
        select_city
    )

    points = alt.Chart(flights_airport
    ).transform_filter(
        (alt.datum.ORIGIN_STATE != "PR") & (alt.datum.ORIGIN_STATE != "VI") & (alt.datum.DEST_STATE != "PR") & (alt.datum.DEST_STATE != "VI")
    ).transform_joinaggregate(
        Total_Flights="count()",
        groupby=["ORIGIN"]
    ).mark_circle(color= '#66c2a5').encode(
        latitude="ORIGIN_LAT:Q",
        longitude="ORIGIN_LONG:Q",
        size=alt.Size("Total_Flights:Q", scale=alt.Scale(range=[0, 1000]), legend=None),
        order=alt.Order("Total_Flights:Q", sort="descending"),
        tooltip=["ORIGIN:N", "Total_Flights:Q"]
    ).add_selection(
        select_city
    )

    fig = (background + connections + points).configure_view(stroke=None)
    fig.width = 800
    fig.height = 500  
    
    return fig
    


def vis():
    st.write("# Which factors lead to flight delay?")
    vis_airline_company()
    vis_flight_time()
    vis_flight_distance()
    vis_flight_origin()
    vis_flight_destination()
    vis_flight_delay_distribution_over_time()
    vis_flight_delay_distribution_over_location()

vis()