File size: 7,454 Bytes
a0589da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
import numpy as np
import pandas as pd
import json
import os
# Constants
c = 299792458 # Speed of light in m/s
E_mc2 = c**2 # Mass-energy equivalence in J/kg
TSR = E_mc2 / (1.38e-23) # Temperature to Speed Ratio in K/m/s
alpha = 1.0 # Proportional constant for TSR
Q = 2 ** (1 / 12) # Fractal structure parameter
dark_energy_density = 5.96e-27 # Density of dark energy in kg/m^3
dark_matter_density = 2.25e-27 # Density of dark matter in kg/m^3
collision_distance = 1e-10 # Distance for collision detection
Hubble_constant = 70.0 # km/s/Mpc (approximation)
Hubble_constant_SI = Hubble_constant * 1000 / 3.086e22 # Convert to SI units (s^-1)
# Initial conditions
temperature_initial = 1.0 # Planck temperature in K
particle_density_initial = 5.16e96 # Planck density in kg/m^3
particle_speed_initial = TSR * temperature_initial # Initial speed based on TSR
# Simulation time
t_planck = 5.39e-44 # Planck time in s
t_simulation = t_planck * 1e5 # Shorter timescale for simulation
dark_matter_density_GeV = dark_matter_density / 1.60217662e-10
# Particle masses (in GeV)
particle_masses = {
"up": 2.3e-3,
"down": 4.8e-3,
"charm": 1.28,
"strange": 0.095,
"top": 173.0,
"bottom": 4.18,
"electron": 5.11e-4,
"muon": 1.05e-1,
"tau": 1.78,
"photon": 0,
"electron_neutrino": 0, # Neutrinos have very small masses
"muon_neutrino": 0,
"tau_neutrino": 0,
"W_boson": 80.379,
"Z_boson": 91.1876,
"Higgs_boson": 125.1,
"gluon": 0, # Massless
"proton": 0.938,
"neutron": 0.939,
"pion_plus": 0.140,
"pion_zero": 0.135,
"kaon_plus": 0.494,
"kaon_zero": 0.498,
"axion": np.sqrt(dark_matter_density) * 1e-5, # Estimated axion mass
"WIMP": 100 # Example WIMP mass
}
# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10
# Simulation setup
num_steps = int(t_simulation / t_planck)
# Tunneling probabilities to investigate
tunneling_probabilities = np.arange(0.1, 10.0, 0.1) # Exclude 1.0
# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)
# Functions to incorporate relativistic effects and collisions
def relativistic_energy(particle_speed, particle_mass):
epsilon = 1e-15 # A small value to avoid division by zero
return particle_mass * c**2 / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))
def relativistic_momentum(particle_speed, particle_mass):
epsilon = 1e-15 # A small value to avoid division by zero
return particle_mass * particle_speed / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))
def update_speed(current_speed, current_temperature, particle_mass):
"""Update the speed of a particle based on temperature and mass."""
return TSR * current_temperature # Update speed using TSR
def check_collision(particle_speeds, collision_distance, current_step):
for j in range(len(particle_speeds)):
for k in range(j+1, len(particle_speeds)):
if np.abs(particle_speeds[j][current_step] - particle_speeds[k][current_step]) < collision_distance:
return True, j, k
return False, -1, -1
def handle_collision(particle_speeds, particle_masses, idx1, idx2, current_step):
"""Handle a collision between two particles."""
p1 = relativistic_momentum(particle_speeds[idx1][current_step], particle_masses[idx1])
p2 = relativistic_momentum(particle_speeds[idx2][current_step], particle_masses[idx2])
# Calculate velocities after collision using conservation of momentum
total_momentum = p1 + p2
total_mass = particle_masses[idx1] + particle_masses[idx2]
v1_new = (total_momentum / total_mass) * (particle_masses[idx1] / total_mass)
v2_new = (total_momentum / total_mass) * (particle_masses[idx2] / total_mass)
particle_speeds[idx1][current_step] = v1_new
particle_speeds[idx2][current_step] = v2_new
# Calculate the exact mass of the WIMP
def calculate_wimp_mass(dark_matter_density_GeV, redshift):
return np.sqrt(2 * dark_matter_density_GeV * (1 + redshift)**3)
# Calculate the exact mass of the axion
def calculate_axion_mass(dark_matter_density_GeV):
return np.sqrt(dark_matter_density_GeV) * 1e-5
# Calculate the redshift
def calculate_redshift(particle_speed):
return (1 + particle_speed / c)
# Calculate the temperature of the universe
def calculate_temperature(T_0, redshift):
return T_0 * (1 + redshift)**(-1)
# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, and Relativistic Effects
for tunneling_probability in tunneling_probabilities:
print(f"Simulating for tunneling probability: {tunneling_probability}")
# Initialize arrays for simulation
num_particles = len(particle_masses)
particle_speeds = [[particle_speed_initial] * num_steps for _ in range(num_particles)]
particle_temperatures = [[temperature_initial] * num_steps for _ in range(num_particles)]
particle_masses_evolution = [[mass * GeV_to_J] * num_steps for mass in particle_masses.values()]
tunneling_steps = [[False] * num_steps for _ in range(num_particles)]
particle_masses_array = np.array([mass * GeV_to_J for mass in particle_masses.values()])
for current_step in range(1, num_steps):
for j in range(num_particles):
# Update temperature based on expansion of the universe
particle_temperatures[j][current_step] = particle_temperatures[j][current_step-1] * (1 - Hubble_constant_SI * t_planck)
# Update speed using TSR
particle_speeds[j][current_step] = update_speed(particle_speeds[j][current_step-1], particle_temperatures[j][current_step], particle_masses_array[j])
# Apply tunneling effect
if np.random.rand() < tunneling_probability:
particle_speeds[j][current_step] = particle_speeds[j][0]
tunneling_steps[j][current_step] = True
# Check for collisions
collision_detected, idx1, idx2 = check_collision(particle_speeds, collision_distance, current_step)
if collision_detected:
handle_collision(particle_speeds, particle_masses_array, idx1, idx2, current_step)
# Calculate entropy using von Neumann entropy
for j in range(num_particles):
if particle_masses_array[j] == 0:
entropy = 0
else:
entropy = -particle_masses_array[j] * np.log1p(particle_masses_array[j])
# Update mass based on entropy
particle_masses_evolution[j][current_step] = particle_masses_evolution[j][current_step-1] + entropy / c**2
# Print calculated masses at the end of the simulation
print(f"Calculated masses at the end of the simulation (Tunneling Probability: {tunneling_probability}):")
for j, particle in enumerate(particle_masses.keys()):
print(f"{particle}: {particle_masses_evolution[j][-1] / GeV_to_J:.4e} GeV")
# Calculate the exact mass of the WIMP
wimp_mass = calculate_wimp_mass(dark_matter_density_GeV, calculate_redshift(particle_speeds[-1, -1]))
# Calculate the exact mass of the axion
axion_mass = calculate_axion_mass(dark_matter_density_GeV)
# Print the exact masses of the WIMP and axion
print(f"Exact mass of the WIMP: {wimp_mass / GeV_to_J:.4e} GeV")
print(f"Exact mass of the axion: {axion_mass / GeV_to_J:.4e} GeV")
|