File size: 14,610 Bytes
a0589da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from mpl_toolkits.mplot3d import Axes3D
import plotly.graph_objects as go
import pandas as pd
import json
import os
# Constants
c = 299792458 # Speed of light in m/s
E_mc2 = c**2 # Mass-energy equivalence in J/kg
TSR = E_mc2 / (1.38e-23) # Temperature to Speed Ratio in K/m/s
alpha = 1.0 # Proportional constant for TSR
Q = 2 ** (1 / 12) # Fractal structure parameter
dark_energy_density = 5.96e-27 # Density of dark energy in kg/m^3
dark_matter_density = 2.25e-27 # Density of dark matter in kg/m^3
collision_distance = 1e-10 # Distance for collision detection
Hubble_constant = 70.0 # km/s/Mpc (approximation)
Hubble_constant_SI = (
Hubble_constant * 1000 / 3.086e22
) # Hubble constant in SI units (s^-1)
# Initial conditions
temperature_initial = 1.42e32 # Planck temperature in K
particle_density_initial = 5.16e96 # Planck density in kg/m^3
particle_speed_initial = c # Initially at the speed of light
# Simulation time
t_planck = 5.39e-44 # Planck time in s
t_simulation = t_planck * 1e3 # Shorter timescale for simulation
# Quark masses (in GeV) - used for initial mass values and comparison
quark_masses = {
"up": 2.3e-3,
"down": 4.8e-3,
"charm": 1.28,
"strange": 0.095,
"top": 173.0,
"bottom": 4.18,
}
# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10
# Simulation setup
num_steps = int(t_simulation / t_planck)
# Tunneling probabilities to investigate
tunneling_probabilities = np.arange(0.1, 1.1, 0.1) # Exclude 1.0
# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)
# Functions to incorporate relativistic effects
def relativistic_energy(particle_speed, particle_mass):
if particle_speed >= c:
return np.inf
return particle_mass * c**2 / np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2))
def relativistic_momentum(particle_speed, particle_mass):
if particle_speed >= c:
return np.inf
return (
particle_mass
* particle_speed
/ np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2))
)
def update_speed(current_speed, current_temperature, particle_mass):
rel_momentum = relativistic_momentum(current_speed, particle_mass)
return c * np.sqrt(
max(1e-10, 1 - (rel_momentum / (rel_momentum + dark_energy_density)) ** 2)
)
# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, and Relativistic Effects
correlation_matrices = [] # Initialize correlation_matrices list
for tunneling_probability in tunneling_probabilities:
print(f"Running simulation for tunneling probability: {tunneling_probability}")
# Initialize arrays for simulation
particle_speeds = np.zeros((len(quark_masses), num_steps)) # 2D array for speeds
particle_temperatures = np.zeros(
(len(quark_masses), num_steps)
) # 2D array for temperatures
particle_masses_evolution = np.zeros(
(len(quark_masses), num_steps)
) # 2D array for mass evolution
particle_positions = np.zeros(
(len(quark_masses), num_steps)
) # 2D array for positions
tunneling_steps = np.zeros(
(len(quark_masses), num_steps), dtype=bool
) # 2D array for tunneling steps
# Create an array of masses for each quark
particle_masses = np.array([mass * GeV_to_J for mass in quark_masses.values()])
for j, (quark, mass) in enumerate(quark_masses.items()):
particle_masses_evolution[j, 0] = particle_masses[j] # Initialize mass
particle_positions[j, 0] = 0 # Initialize position
for i in range(1, num_steps):
particle_speeds[j, i] = update_speed(
particle_speeds[j, i - 1],
particle_temperatures[j, i - 1],
particle_masses[j],
)
particle_positions[j, i] = (
particle_positions[j, i - 1] + particle_speeds[j, i] * t_planck
) # Update position
value = (
1
- (particle_speeds[j, i] / (TSR * temperature_initial))
+ dark_matter_density
)
if np.random.rand() < tunneling_probability:
particle_speeds[j, i] = particle_speeds[j, 0] # Tunneling effect
tunneling_steps[j, i] = True # Mark tunneling step
if value < 0:
value = 0
particle_temperatures[j, i] = (
alpha * particle_speeds[j, i] ** 2
) # Apply TSR equation
# Update mass based on energy conversion
speed_squared_diff = (
particle_speeds[j, i] ** 2 - particle_speeds[j, i - 1] ** 2
)
# Avoid division by zero (if speed doesn't change, mass doesn't change)
if speed_squared_diff == 0:
particle_masses_evolution[j, i] = particle_masses_evolution[j, i - 1]
else:
# Calculate the change in relativistic energy
energy_diff = relativistic_energy(
particle_speeds[j, i], particle_masses[j]
) - relativistic_energy(particle_speeds[j, i - 1], particle_masses[j])
# Avoid NaN by checking if energy_diff is practically zero
if abs(energy_diff) < 1e-15: # Adjust the tolerance as needed
particle_masses_evolution[j, i] = particle_masses_evolution[
j, i - 1
]
else:
# Update mass based on energy difference
new_mass = (
particle_masses_evolution[j, i - 1] + energy_diff / c**2
)
if np.isfinite(new_mass): # Check if the new mass is finite
particle_masses_evolution[j, i] = new_mass
else:
particle_masses_evolution[j, i] = particle_masses_evolution[
j, i - 1
]
# Collision detection and resolution
for k in range(j + 1, len(quark_masses)):
if (
abs(particle_positions[j, i] - particle_positions[k, i])
< collision_distance
):
# Resolve collision (simplified example)
# Calculate relative speed before the collision
v_rel = particle_speeds[j, i] - particle_speeds[k, i]
# Calculate the new speeds after the collision
particle_speeds[j, i] = (
particle_speeds[j, i]
* (particle_masses[j] - particle_masses[k])
+ 2 * particle_masses[k] * particle_speeds[k, i]
) / (particle_masses[j] + particle_masses[k])
particle_speeds[k, i] = (
particle_speeds[k, i]
* (particle_masses[k] - particle_masses[j])
+ 2 * particle_masses[j] * particle_speeds[j, i]
) / (particle_masses[j] + particle_masses[k])
# Limit speed after collision
max_speed = c * 0.99 # Adjust the maximum speed as needed
particle_speeds[j, i] = np.clip(particle_speeds[j, i], 0, max_speed)
particle_speeds[k, i] = np.clip(particle_speeds[k, i], 0, max_speed)
# Update temperatures based on TSR
particle_temperatures[j, i] = alpha * particle_speeds[j, i] ** 2
particle_temperatures[k, i] = alpha * particle_speeds[k, i] ** 2
# Apply expansion of the universe (redshift)
particle_speeds[j, i] *= 1 - Hubble_constant_SI * t_planck
# Apply expansion of the universe (cooling)
particle_temperatures[j, i] *= 1 - Hubble_constant_SI * t_planck
# Debugging output
if np.isnan(particle_speeds[j, i]) or np.isnan(particle_temperatures[j, i]):
print(f"NaN detected at step {i} for quark {quark}")
print(f"Previous speed: {particle_speeds[j, i - 1]}")
print(f"Previous temperature: {particle_temperatures[j, i - 1]}")
print(f"Current speed: {particle_speeds[j, i]}")
print(f"Current temperature: {particle_temperatures[j, i]}")
break
# Cap speed to avoid unphysical values
particle_speeds[j] = np.clip(particle_speeds[j], 0, c)
# --- Plotly Interactive Visualization (3D) ---
# Create the 3D scatter plot using Plotly
fig = go.Figure(
data=[
go.Scatter3d(
x=particle_speeds[j],
y=particle_temperatures[j],
z=np.arange(num_steps),
mode="lines+markers",
name=quark.capitalize(),
)
for j, quark in enumerate(quark_masses.keys())
]
)
fig.update_layout(
title=f"Big Bang Simulation: Temperature vs. Speed (Tunneling Probability: {tunneling_probability})",
autosize=False,
width=800,
height=600,
margin=dict(l=65, r=50, b=65, t=90),
)
fig.show()
# --- Matplotlib Animation (3D) ---
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
(line,) = ax.plot([], [], [], "b-")
# Set axis limits
ax.set_xlim(min(particle_speeds.flatten()), max(particle_speeds.flatten()))
ax.set_ylim(
min(particle_temperatures.flatten()), max(particle_temperatures.flatten())
)
ax.set_zlim(0, num_steps)
ax.set_xlabel("Particle Speed")
ax.set_ylabel("Particle Temperature")
ax.set_zlabel("Time")
ax.set_title(
f"Big Bang Simulation Animation (Tunneling Probability: {tunneling_probability})"
)
def init():
line.set_data([], [])
line.set_3d_properties([])
return (line,)
def update(frame):
line.set_data(
particle_speeds[:, :frame].flatten(),
particle_temperatures[:, :frame].flatten(),
)
line.set_3d_properties(np.tile(np.arange(frame), len(quark_masses)))
return (line,)
ani = FuncAnimation(fig, update, frames=num_steps, init_func=init, blit=True)
ani.save(f"big_bang_simulation_3d_{tunneling_probability}.gif", writer="pillow")
plt.show()
# --- Plotly Mass Evolution (3D) ---
X, Y = np.meshgrid(
particle_speeds[0], np.arange(num_steps)
) # Create 2D meshgrid for x and y
fig = go.Figure(
data=[
go.Surface(
z=particle_masses_evolution[j],
x=X,
y=Y,
colorscale="Viridis",
name=quark.capitalize(),
)
for j, quark in enumerate(quark_masses.keys())
]
)
fig.update_layout(
title=f"Big Bang Simulation: Mass Evolution (Tunneling Probability: {tunneling_probability})",
autosize=False,
width=800,
height=600,
margin=dict(l=65, r=50, b=65, t=90),
)
fig.show()
# --- Plotly Tunneling Effect (3D) ---
X, Y = np.meshgrid(
particle_speeds[0], np.arange(num_steps)
) # Create 2D meshgrid for x and y
fig = go.Figure(
data=[
go.Surface(
z=tunneling_steps[j],
x=X,
y=Y,
colorscale="Blues",
name=quark.capitalize(),
)
for j, quark in enumerate(quark_masses.keys())
]
)
fig.update_layout(
title=f"Big Bang Simulation: Tunneling Effect (Tunneling Probability: {tunneling_probability})",
autosize=False,
width=800,
height=600,
margin=dict(l=65, r=50, b=65, t=90),
)
fig.show()
# --- Correlation Analysis ---
df = pd.DataFrame(
{
"Speed": particle_speeds.flatten(),
"Temperature": particle_temperatures.flatten(),
"Mass": particle_masses_evolution.flatten(),
"Tunneling": tunneling_steps.flatten(),
}
)
correlation_matrix = df.corr()
correlation_matrices.append(correlation_matrix)
print("Correlation Matrix:")
print(correlation_matrix)
# Print calculated masses at the end of the simulation
print(
f"Calculated masses at the end of the simulation (Tunneling Probability: {tunneling_probability}):"
)
for j, quark in enumerate(quark_masses.keys()):
print(f"{quark}: {particle_masses_evolution[j, -1] / GeV_to_J:.4e} GeV")
print("Real masses:")
for quark, mass in quark_masses.items():
print(f"{quark}: {mass:.4e} GeV")
# Save data to JSON file
data_filename = os.path.join(
data_dir, f"big_bang_simulation_data_{tunneling_probability:.1f}.json"
)
data = {
"tunneling_probability": tunneling_probability,
"particle_speeds": particle_speeds.tolist(),
"particle_temperatures": particle_temperatures.tolist(),
"particle_masses_evolution": particle_masses_evolution.tolist(),
"tunneling_steps": tunneling_steps.tolist(),
"correlation_matrix": correlation_matrix.values.tolist(), # Use values.tolist() to convert DataFrame to list
}
with open(data_filename, "w") as f:
json.dump(data, f)
correlation_matrices = []
for tunneling_probability in tunneling_probabilities:
#... (rest of the code remains the same)
correlation_matrix = df.corr()
if correlation_matrix.shape[0] == correlation_matrix.shape[1]:
correlation_matrices.append(correlation_matrix)
else:
print(f"Skipping correlation matrix for tunneling probability {tunneling_probability} because it is not a square matrix.")
# Flatten the correlation matrices
flat_correlation_matrices = []
for i, matrix in enumerate(correlation_matrices):
flattened = matrix.values.flatten()
flat_correlation_matrices.append(flattened)
# Convert to 2D array
flat_correlation_matrices = np.array(flat_correlation_matrices)
# Create DataFrame with appropriate column names
columns = [f"Corr_{i}_{j}" for i in range(flat_correlation_matrices.shape[1] // 4) for j in range(4)]
correlation_matrices_df = pd.DataFrame(flat_correlation_matrices, columns=columns, index=tunneling_probabilities)
# Print or save DataFrame
print("Correlation Matrices for Different Tunneling Probabilities:")
print(correlation_matrices_df)
|