File size: 6,677 Bytes
a0589da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
import pandas as pd
import json
import os

# Constants
c = 299792458  # Speed of light in m/s
E_mc2 = c**2  # Mass-energy equivalence in J/kg
TSR = E_mc2 / (1.38e-23)  # Temperature to Speed Ratio in K/m/s
alpha = 1.0  # Proportional constant for TSR
Q = 2 ** (1 / 12)  # Fractal structure parameter
dark_energy_density = 5.96e-27  # Density of dark energy in kg/m^3
dark_matter_density = 2.25e-27  # Density of dark matter in kg/m^3
collision_distance = 1e-10  # Distance for collision detection
Hubble_constant = 70.0  # km/s/Mpc (approximation)
Hubble_constant_SI = Hubble_constant * 1000 / 3.086e22  # Convert to SI units (s^-1)

# Initial conditions
temperature_initial = 1.0  # Planck temperature in K
particle_density_initial = 5.16e96  # Planck density in kg/m^3
particle_speed_initial = c  # Initially at the speed of light

# Simulation time
t_planck = 5.39e-44  # Planck time in s
t_simulation = t_planck * 1e5  # Shorter timescale for simulation

# Quark masses (in GeV) - used for initial mass values and comparison
quark_masses = {
    "up": 2.3e-3,
    "down": 4.8e-3,
    "charm": 1.28,
    "strange": 0.095,
    "top": 173.0,
    "bottom": 4.18,
    "electron": 5.11e-4,
    "muon": 1.05e-1,
    "tau": 1.78,
    "photon": 0,
}

# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10

# Simulation setup
num_steps = int(t_simulation / t_planck)

# Tunneling probabilities to investigate
tunneling_probabilities = np.arange(99.1, 100.0, 0.1)  # Exclude 1.0

# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)

# Functions to incorporate relativistic effects and collisions
def relativistic_energy(particle_speed, particle_mass):
    epsilon = 1e-15  # A small value to avoid division by zero
    return particle_mass * c**2 / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))

def relativistic_momentum(particle_speed, particle_mass):
    epsilon = 1e-15  # A small value to avoid division by zero
    return particle_mass * particle_speed / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))

def update_speed(current_speed, current_temperature, particle_mass):
    """Update the speed of a particle based on temperature and mass."""
    rel_momentum = relativistic_momentum(current_speed, particle_mass)
    epsilon = 1e-15  # A small value to avoid division by zero
    return c * np.sqrt(1 - (rel_momentum / (rel_momentum + dark_energy_density + epsilon)) ** 2)

def check_collision(particle_speeds, collision_distance):
    epsilon = 1e-15  # A small value to avoid invalid subtraction
    for j in range(len(particle_speeds)):
        for k in range(j+1, len(particle_speeds)):
            if np.abs(particle_speeds[j] - particle_speeds[k]) < collision_distance + epsilon:
                return True, j, k
    return False, -1, -1
def handle_collision(particle_speeds, particle_masses, idx1, idx2):
    """Handle a collision between two particles."""
    p1 = relativistic_momentum(particle_speeds[idx1], particle_masses[idx1])
    p2 = relativistic_momentum(particle_speeds[idx2], particle_masses[idx2])
    
    # Calculate velocities after collision using conservation of momentum
    total_momentum = p1 + p2
    total_mass = particle_masses[idx1] + particle_masses[idx2]
    v1_new = (total_momentum / total_mass) * (particle_masses[idx1] / total_mass)
    v2_new = (total_momentum / total_mass) * (particle_masses[idx2] / total_mass)
    
    particle_speeds[idx1], particle_speeds[idx2] = v1_new, v2_new

# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, and Relativistic Effects
for tunneling_probability in tunneling_probabilities:
    print(f"Simulating for tunneling probability: {tunneling_probability}")
    
    # Initialize arrays for simulation
    particle_speeds = np.zeros((len(quark_masses), num_steps))  # 2D array for speeds
    particle_temperatures = np.zeros((len(quark_masses), num_steps))  # 2D array for temperatures
    particle_masses_evolution = np.zeros((len(quark_masses), num_steps))  # 2D array for mass evolution
    tunneling_steps = np.zeros((len(quark_masses), num_steps), dtype=bool)  # 2D array for tunneling steps
    
    # Create an array of masses for each quark
    particle_masses = np.array([mass * GeV_to_J for mass in quark_masses.values()])
    
    for j, (quark, mass) in enumerate(quark_masses.items()):
        particle_masses_evolution[j, 0] = particle_masses[j]  # Initialize mass
        
        for i in range(1, num_steps):
            particle_speeds[j, i] = update_speed(
                particle_speeds[j, i - 1],
                particle_temperatures[j, i - 1],
                particle_masses[j]
            )
            
            # Apply tunneling effect
            if np.random.rand() < tunneling_probability:
                particle_speeds[j, i] = particle_speeds[j, 0]
                tunneling_steps[j, i] = True
            
            particle_temperatures[j, i] = alpha * particle_speeds[j, i] ** 2  # Apply TSR equation
            
            # Update mass based on energy conversion
            energy_diff = relativistic_energy(particle_speeds[j, i], particle_masses[j]) - relativistic_energy(particle_speeds[j, i - 1], particle_masses[j])
            particle_masses_evolution[j, i] = particle_masses_evolution[j, i - 1] + energy_diff / c**2
            
            # Apply expansion of the universe
            particle_speeds[j, i] *= 1 - Hubble_constant_SI * t_planck
            particle_temperatures[j, i] *= 1 - Hubble_constant_SI * t_planck
            
            # Check for collisions and handle them
            collision, idx1, idx2 = check_collision(particle_speeds[:, i], collision_distance)
            if collision:
                handle_collision(particle_speeds[:, i], particle_masses, idx1, idx2)

    # Print calculated masses at the end of the simulation
    print(f"Calculated masses at the end of the simulation (Tunneling Probability: {tunneling_probability}):")
    for j, quark in enumerate(quark_masses.keys()):
        print(f"{quark}: {particle_masses_evolution[j, -1] / GeV_to_J:.4e} GeV")

    # Save data to JSON file
    data_filename = os.path.join(data_dir, f"big_bang_simulation_data_{tunneling_probability:.2f}.json")
    data = {
        "tunneling_probability": tunneling_probability,
        "particle_masses_evolution": particle_masses_evolution.tolist(),
        "particle_speeds": particle_speeds.tolist(),
        "particle_temperatures": particle_temperatures.tolist(),
        "tunneling_steps": tunneling_steps.tolist()
    }
    with open(data_filename, "w") as f:
        json.dump(data, f)