File size: 6,593 Bytes
a0589da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import numpy as np
import pandas as pd
import json
import os

# Constants
c = 299792458  # Speed of light in m/s
E_mc2 = c**2  # Mass-energy equivalence in J/kg
TSR = E_mc2 / (1.38e-23)  # Temperature to Speed Ratio in K/m/s
alpha = 1.0  # Proportional constant for TSR
Q = 2 ** (1 / 12)  # Fractal structure parameter
dark_energy_density = 5.96e-27  # Density of dark energy in kg/m^3
dark_matter_density = 2.25e-27  # Density of dark matter in kg/m^3
collision_distance = 1e-10  # Distance for collision detection
Hubble_constant = 70.0  # km/s/Mpc (approximation)
Hubble_constant_SI = (
    Hubble_constant * 1000 / 3.086e22
)  # Hubble constant in SI units (s^-1)

# Initial conditions
temperature_initial = 1.42e32  # Planck temperature in K
particle_density_initial = 5.16e96  # Planck density in kg/m^3
particle_speed_initial = c  # Initially at the speed of light

# Simulation time
t_planck = 5.39e-44  # Planck time in s
t_simulation = t_planck * 1e5  # Shorter timescale for simulation

# Quark masses (in GeV) - used for initial mass values and comparison
quark_masses = {
    "up": 2.3e-3,
    "down": 4.8e-3,
    "charm": 1.28,
    "strange": 0.095,
    "top": 173.0,
    "bottom": 4.18,
    "electron": 5.11e-4,
    "muon": 1.05e-1,
    "tau": 1.78,
    "photon": 0,
}

# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10

# Simulation setup
num_steps = int(t_simulation / t_planck)

# Tunneling probabilities to investigate
tunneling_probabilities = np.arange(0.1, 1.1, 0.1)  # Exclude 1.0

# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)

# Functions to incorporate relativistic effects
def relativistic_energy(particle_speed, particle_mass):
    if particle_speed >= c:
        return np.inf
    return particle_mass * c**2 / np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2))


def relativistic_momentum(particle_speed, particle_mass):
    if particle_speed >= c:
        return np.inf
    return (
        particle_mass
        * particle_speed
        / np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2))
    )


def update_speed(current_speed, current_temperature, particle_mass):
    rel_momentum = relativistic_momentum(current_speed, particle_mass)
    return c * np.sqrt(
        max(1e-10, 1 - (rel_momentum / (rel_momentum + dark_energy_density)) ** 2)
    )


# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, and Relativistic Effects
for tunneling_probability in tunneling_probabilities:
    print(f"Simulating for tunneling probability: {tunneling_probability}")

    # Initialize arrays for simulation
    particle_speeds = np.zeros((len(quark_masses), num_steps))  # 2D array for speeds
    particle_temperatures = np.zeros(
        (len(quark_masses), num_steps)
    )  # 2D array for temperatures
    particle_masses_evolution = np.zeros(
        (len(quark_masses), num_steps)
    )  # 2D array for mass evolution
    tunneling_steps = np.zeros(
        (len(quark_masses), num_steps), dtype=bool
    )  # 2D array for tunneling steps

    # Create an array of masses for each quark
    particle_masses = np.array([mass * GeV_to_J for mass in quark_masses.values()])

    for j, (quark, mass) in enumerate(quark_masses.items()):
        particle_masses_evolution[j, 0] = particle_masses[j]  # Initialize mass

        for i in range(1, num_steps):
            particle_speeds[j, i] = update_speed(
                particle_speeds[j, i - 1],
                particle_temperatures[j, i - 1],
                particle_masses[j],
            )

            value = (
                1
                - (particle_speeds[j, i] / (TSR * temperature_initial))
                + dark_matter_density
            )

            if np.random.rand() < tunneling_probability:
                particle_speeds[j, i] = particle_speeds[j, 0]  # Tunneling effect
                tunneling_steps[j, i] = True  # Mark tunneling step

            if value < 0:
                value = 0

            particle_temperatures[j, i] = (
                alpha * particle_speeds[j, i] ** 2
            )  # Apply TSR equation

            # Update mass based on energy conversion
            speed_squared_diff = (
                particle_speeds[j, i] ** 2 - particle_speeds[j, i - 1] ** 2
            )

            # Avoid division by zero (if speed doesn't change, mass doesn't change)
            if speed_squared_diff == 0:
                particle_masses_evolution[j, i] = particle_masses_evolution[j, i - 1]
            else:
                # Calculate the change in relativistic energy
                energy_diff = relativistic_energy(
                    particle_speeds[j, i], particle_masses[j]
                ) - relativistic_energy(particle_speeds[j, i - 1], particle_masses[j])

                # Avoid NaN by checking if energy_diff is practically zero
                if abs(energy_diff) < 1e-15:  # Adjust the tolerance as needed
                    particle_masses_evolution[j, i] = particle_masses_evolution[
                        j, i - 1
                    ]
                else:
                    # Update mass based on energy difference
                    new_mass = (
                        particle_masses_evolution[j, i - 1] + energy_diff / c**2
                    )
                    if np.isfinite(new_mass):  # Check if the new mass is finite
                        particle_masses_evolution[j, i] = new_mass
                    else:
                        particle_masses_evolution[j, i] = particle_masses_evolution[
                            j, i - 1
                        ]

            # Apply expansion of the universe (redshift)
            particle_speeds[j, i] *= 1 - Hubble_constant_SI * t_planck

            # Apply expansion of the universe (cooling)
            particle_temperatures[j, i] *= 1 - Hubble_constant_SI * t_planck

    # Print calculated masses at the end of the simulation
    print(
        f"Calculated masses at the end of the simulation (Tunneling Probability: {tunneling_probability}):"
    )
    for j, quark in enumerate(quark_masses.keys()):
        print(
            f"{quark}: {particle_masses_evolution[j, -1] / GeV_to_J:.4e} GeV"
        )

    # Save data to JSON file
    data_filename = os.path.join(
        data_dir, f"big_bang_simulation_data_{tunneling_probability:.1f}.json"
    )
    data = {
        "tunneling_probability": tunneling_probability,
        "particle_masses_evolution": particle_masses_evolution.tolist(),
    }
    with open(data_filename, "w") as f:
        json.dump(data, f)