File size: 5,350 Bytes
a0589da
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import numpy as np
import json
import os

# Constants
c = 299792458  # Speed of light in m/s
E_mc2 = c**2  # Mass-energy equivalence in J/kg
dark_energy_density = 5.96e-27  # Density of dark energy in kg/m^3
collision_distance = 1e-10  # Distance for collision detection

# Initial conditions
temperature_initial = 1.42e32  # Planck temperature in K
particle_speed_initial = c  # Initially at the speed of light

# Simulation time
t_planck = 5.39e-44  # Planck time in s
t_simulation = t_planck * 1e5  # Shorter timescale for simulation

# Quark masses (in GeV)
quark_masses = {
    "up": 2.3e-3,
    "down": 4.8e-3,
    "charm": 1.28,
    "strange": 0.095,
    "top": 173.0,
    "bottom": 4.18,
    "electron": 5.11e-4,
    "muon": 1.05e-1,
    "tau": 1.78,
    "photon": 0,
}

# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10

# Simulation setup
num_steps = int(t_simulation / t_planck)

# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)

# Functions to incorporate relativistic effects and collisions
def relativistic_momentum(particle_speed, particle_mass):
    if particle_speed >= c:
        return np.inf
    return (
        particle_mass
        * particle_speed
        / np.sqrt(max(1e-10, 1 - (particle_speed / c) ** 2))
    )

def update_speed(current_speed, current_temperature, particle_mass):
    # Placeholder for speed update logic
    return current_speed  # This should be replaced with actual logic

def check_collision(particle_speeds, collision_distance):
    for j in range(len(particle_speeds)):
        for k in range(j + 1, len(particle_speeds)):
            if np.abs(particle_speeds[j] - particle_speeds[k]) < collision_distance:
                return True, j, k
    return False, -1, -1

def handle_collision(particle_speeds, idx1, idx2):
    # Exchange momentum for a simplified collision response
    p1 = relativistic_momentum(particle_speeds[idx1], particle_masses[idx1])
    p2 = relativistic_momentum(particle_speeds[idx2], particle_masses[idx2])
    
    # Simplified exchange of speeds based on momentum
    particle_speeds[idx1] = p2 / particle_masses[idx1]  # Update speed of particle 1
    particle_speeds[idx2] = p1 / particle_masses[idx2]  # Update speed of particle 2

# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, and Relativistic Effects
for tunneling_probability in np.arange(0.01, 2.5, 0.1):
    print(f"Simulating for tunneling probability: {tunneling_probability}")

    # Initialize arrays for simulation
    particle_speeds = np.zeros((len(quark_masses), num_steps))  # 2D array for speeds
    particle_temperatures = np.zeros((len(quark_masses), num_steps))  # 2D array for temperatures
    np.zeros((len(quark_masses), num_steps))  # 2D array for temperatures
    particle_masses_evolution = np.zeros((len(quark_masses), num_steps))  # 2D array for mass evolution
    tunneling_steps = np.zeros((len(quark_masses), num_steps), dtype=bool)  # 2D array for tunneling steps

    # Create an array of masses for each quark
    particle_masses = np.array([mass * GeV_to_J for mass in quark_masses.values()])

    for j, (quark, mass) in enumerate(quark_masses.items()):
        # Initialize particle speeds and temperatures
        particle_speeds[j, 0] = particle_speed_initial
        particle_temperatures[j, 0] = temperature_initial
        particle_masses_evolution[j, 0] = mass * GeV_to_J  # Convert to Joules

    # Time evolution loop
    for step in range(1, num_steps):
        for j in range(len(quark_masses)):
            # Update temperature based on some model (placeholder)
            particle_temperatures[j, step] = particle_temperatures[j, step - 1] * 0.99  # Cooling down

            # Update speed based on temperature and mass
            particle_speeds[j, step] = update_speed(
                particle_speeds[j, step - 1], 
                particle_temperatures[j, step], 
                particle_masses[j]
            )

            # Check for collisions
            collision_detected, idx1, idx2 = check_collision(particle_speeds[:, step], collision_distance)
            if collision_detected:
                handle_collision(particle_speeds[:, step], idx1, idx2)

            # Tunneling effect (placeholder for actual physics)
            if np.random.rand() < tunneling_probability:
                tunneling_steps[j, step] = True
                # Modify mass or speed based on tunneling (placeholder)
                particle_masses[j] *= 1.1  # Increase mass as an example

        # Store mass evolution
        particle_masses_evolution[:, step] = particle_masses

    # Save the simulation data for this tunneling probability
    simulation_data = {
        "particle_speeds": particle_speeds.tolist(),  # Convert to list for JSON serialization
        "particle_temperatures": particle_temperatures.tolist(),  # Convert to list for JSON serialization
        "particle_masses_evolution": particle_masses_evolution.tolist(),  # Convert to list for JSON serialization
        "tunneling_steps": tunneling_steps.tolist(),  # Convert to list for JSON serialization
    }

    with open(os.path.join(data_dir, f"simulation_tunneling_{tunneling_probability:.2f}.json"), "w") as f:
        json.dump(simulation_data, f)

print("Simulation completed and data saved.")