File size: 7,843 Bytes
a0589da |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
import numpy as np
import pandas as pd
import json
import os
# Constants
c = 299792458 # Speed of light in m/s
E_mc2 = c**2 # Mass-energy equivalence in J/kg
TSR = E_mc2 / (1.38e-23) # Temperature to Speed Ratio in K/m/s
alpha = 1.0 # Proportional constant for TSR
Q = 2 ** (1 / 12) # Fractal structure parameter
dark_energy_density = 5.96e-27 # Density of dark energy in kg/m^3
dark_matter_density = 2.25e-27 # Density of dark matter in kg/m^3
collision_distance = 1e-10 # Distance for collision detection
Hubble_constant = 70.0 # km/s/Mpc (approximation)
Hubble_constant_SI = Hubble_constant * 1000 / 3.086e22 # Convert to SI units (s^-1)
# Initial conditions
temperature_initial = 1.0 # Planck temperature in K
particle_density_initial = 5.16e96 # Planck density in kg/m^3
particle_speed_initial = TSR * temperature_initial # Initial speed based on TSR
# Simulation time
t_planck = 5.39e-44 # Planck time in s
t_simulation = t_planck * 1e5 # Shorter timescale for simulation
# Updated particle masses (in GeV)
particle_masses = {
"up": 2.3e-3,
"down": 4.8e-3,
"charm": 1.28,
"strange": 0.095,
"top": 173.0,
"bottom": 4.18,
"electron": 5.11e-4,
"muon": 1.05e-1,
"tau": 1.78,
"photon": 0,
"electron_neutrino": 0, # Neutrinos have very small masses
"muon_neutrino": 0,
"tau_neutrino": 0,
"W_boson": 80.379,
"Z_boson": 91.1876,
"Higgs_boson": 125.1,
"gluon": 0, # Massless
"proton": 0.938,
"neutron": 0.939,
"pion_plus": 0.140,
"pion_zero": 0.135,
"kaon_plus": 0.494,
"kaon_zero": 0.498
}
# Conversion factor from GeV to J
GeV_to_J = 1.60217662e-10
# Simulation setup
num_steps = int(t_simulation / t_planck)
# Tunneling probabilities to investigate
tunneling_probabilities = np.arange(0.1, 1.5, 0.1) # Exclude 1.0
# Create a directory to store the data
data_dir = "big_bang_simulation_data"
os.makedirs(data_dir, exist_ok=True)
# Functions to incorporate relativistic effects and collisions
def relativistic_energy(particle_speed, particle_mass):
epsilon = 1e-15 # A small value to avoid division by zero
return particle_mass * c**2 / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))
def relativistic_momentum(particle_speed, particle_mass):
epsilon = 1e-15 # A small value to avoid division by zero
return particle_mass * particle_speed / np.sqrt(max(1e-15, 1 - (particle_speed / c) ** 2 + epsilon))
def update_speed(current_speed, current_temperature, particle_mass):
"""Update the speed of a particle based on temperature and mass."""
return TSR * current_temperature # Update speed using TSR
def check_collision(particle_speeds, collision_distance):
epsilon = 1e-15 # A small value to avoid invalid subtraction
for j in range(len(particle_speeds)):
for k in range(j+1, len(particle_speeds)):
if np.abs(particle_speeds[j] - particle_speeds[k]) < collision_distance + epsilon:
return True, j, k
return False, -1, -1
def handle_collision(particle_speeds, particle_masses, idx1, idx2, current_step):
"""Handle a collision between two particles."""
if particle_masses[idx1] == 0 or particle_masses[idx2] == 0:
# Skip handling collisions involving massless particles
return
p1 = relativistic_momentum(particle_speeds[idx1, current_step], particle_masses[idx1])
p2 = relativistic_momentum(particle_speeds[idx2, current_step], particle_masses[idx2])
# Calculate velocities after collision using conservation of momentum
total_momentum = p1 + p2
total_mass = particle_masses[idx1] + particle_masses[idx2]
v1_new = (total_momentum / total_mass) * (particle_masses[idx1] / total_mass)
v2_new = (total_momentum / total_mass) * (particle_masses[idx2] / total_mass)
particle_speeds[idx1, current_step], particle_speeds[idx2, current_step] = v1_new, v2_new
# Simulate the Big Bang with Dark Energy, Dark Matter, Tunneling, Relativistic Effects, Redshift, and Entanglement
for tunneling_probability in tunneling_probabilities:
print(f"Simulating for tunneling probability: {tunneling_probability}")
# Initialize arrays for simulation
num_particles = len(particle_masses)
particle_speeds = np.zeros((num_particles, num_steps)) # 2D array for speeds
particle_temperatures = np.zeros((num_particles, num_steps)) # 2D array for temperatures
particle_masses_evolution = np.zeros((num_particles, num_steps)) # 2D array for mass evolution
tunneling_steps = np.zeros((num_particles, num_steps), dtype=bool) # 2D array for tunneling steps
particle_momentum = np.zeros((num_particles, num_steps)) # 2D array for momentum
total_energy = np.zeros(num_steps) # 1D array for total energy of the system
redshifts = np.zeros((num_particles, num_steps)) # 2D array for redshift
entanglement_entropies = np.zeros((num_particles, num_steps)) # 2D array for entanglement entropy
particle_states = np.random.rand(num_particles, num_steps) # Placeholder for particle states
# Create an array of masses for each particle
particle_masses_array = np.array([mass * GeV_to_J for mass in particle_masses.values()])
for j, (particle, mass) in enumerate(particle_masses.items()):
particle_speeds[j, 0] = particle_speed_initial # Initialize speed
particle_masses_evolution[j, 0] = mass * GeV_to_J # Initialize mass evolution
for current_step in range(1, num_steps):
for j in range(num_particles):
# Update temperature based on expansion of the universe
particle_temperatures[j, current_step] = particle_temperatures[j, current_step-1] * (1 - Hubble_constant_SI * t_planck)
# Update speed using TSR
particle_speeds[j, current_step] = update_speed(particle_speeds[j, current_step-1], particle_temperatures[j, current_step], particle_masses_array[j])
# Apply tunneling effect
if np.random.rand() < tunneling_probability:
particle_speeds[j, current_step] = particle_speeds[j, 0]
tunneling_steps[j, current_step] = True
# Calculate redshift
redshifts[j, current_step] = (1 + particle_speeds[j, current_step] / c)
# Calculate entanglement entropy
entanglement_entropies[j, current_step] = -np.sum(particle_states[j, current_step] * np.log(particle_states[j, current_step]))
# Update mass evolution
particle_masses_evolution[j, current_step] = particle_masses_evolution[j, current_step-1] * (1 - dark_energy_density * t_planck)
# Check for collisions
collision_detected, idx1, idx2 = check_collision(particle_speeds[:, current_step], collision_distance)
if collision_detected:
handle_collision(particle_speeds, particle_masses_array, idx1, idx2, current_step)
# Print calculated masses at the end of the simulation
print(f"Calculated masses at the end of the simulation (Tunneling Probability: {tunneling_probability}):")
for j, particle in enumerate(particle_masses.keys()):
print(f"{particle}: {particle_masses_evolution[j, -1] / GeV_to_J:.4e} GeV")
# Save data to JSON file
data_filename = os.path.join(data_dir, f"big_bang_simulation_data_{tunneling_probability:.2f}.json")
data = {
"tunneling_probability": tunneling_probability,
"particle_masses_evolution": particle_masses_evolution.tolist(),
"particle_speeds": particle_speeds.tolist(),
"particle_temperatures": particle_temperatures.tolist(),
"tunneling_steps": tunneling_steps.tolist(),
"redshifts": redshifts.tolist(),
"entanglement_entropies": entanglement_entropies.tolist()
}
with open(data_filename, "w") as f:
json.dump(data, f) |