import decimal from decimal import Decimal, getcontext # Set the precision getcontext().prec = 110 # Constants c = 299792458 # Speed of light in m/s h = Decimal('6.62607015e-34') # Planck constant in J*s k_B = Decimal('1.38e-23') # Boltzmann constant in J/K TSR = Decimal(c**2) / k_B # Temperature to Speed Ratio in K*m/s Q = Decimal('2') ** (Decimal('1') / Decimal('12')) # Fractal structure parameter def chudnovsky_pi(n_terms): C = Decimal(426880) * Decimal(10005).sqrt() K = Decimal(6) M = Decimal(1) X = Decimal(1) L = Decimal(13591409) S = Decimal(0) # Initialize S to 0 for i in range(1, n_terms + 1): # Change to n_terms + 1 to avoid i = 0 if i == 1: # Handle the first iteration separately M = Decimal(1) # Set M to 1 for the first iteration else: divisor = Decimal((i-1)**3) if divisor == Decimal(0): # Check for zero divisor divisor = Decimal(1) # Set divisor to 1 to avoid division by zero M = (K**3 - Decimal(16)*K) * M // divisor L += Decimal(545140134) X *= Decimal(-262537412640768000) term = Decimal(M * L) / X # Apply fractal Q to the term term *= Q ** (Decimal(i) / Decimal(n_terms)) # Apply TSR and quantum fluctuations conservatively if term < Decimal('1e-15'): TSR_rel = TSR ΔTSR_q = Decimal('0') else: TSR_rel = TSR / Decimal((1 - (term**2 / Decimal(c**2))).sqrt()) ΔTSR_q = h * term S += term * TSR_rel + ΔTSR_q K += Decimal(12) pi = C / S return +pi # Example usage pi = chudnovsky_pi(100) print(f"π ≈ {pi}") # Save results to a JSON file import json with open('pi_simulation_results.json', 'w') as f: json.dump({"pi_approx": str(pi)}, f)