陈俊杰
commited on
Commit
·
c8d8fbe
1
Parent(s):
000fbcd
fontSize
Browse files
app.py
CHANGED
|
@@ -123,6 +123,11 @@ with st.sidebar:
|
|
| 123 |
st.markdown("""
|
| 124 |
<style>
|
| 125 |
/* 应用到所有的Markdown渲染文本 */
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
.main-text {
|
| 127 |
font-size: 24px;
|
| 128 |
line-height: 1.6;
|
|
@@ -206,21 +211,29 @@ elif page == "Important Dates":
|
|
| 206 |
elif page == "Evaluation Measures":
|
| 207 |
st.header("Evaluation Measures")
|
| 208 |
st.markdown("""
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
elif page == "Data and File format":
|
| 225 |
st.header("Data and File format")
|
| 226 |
st.markdown("""
|
|
|
|
| 123 |
st.markdown("""
|
| 124 |
<style>
|
| 125 |
/* 应用到所有的Markdown渲染文本 */
|
| 126 |
+
div[data-testid="stMarkdownContainer"] * {
|
| 127 |
+
font-size: 24px;
|
| 128 |
+
line-height: 1.6;
|
| 129 |
+
color: #4CAF50;
|
| 130 |
+
}
|
| 131 |
.main-text {
|
| 132 |
font-size: 24px;
|
| 133 |
line-height: 1.6;
|
|
|
|
| 211 |
elif page == "Evaluation Measures":
|
| 212 |
st.header("Evaluation Measures")
|
| 213 |
st.markdown("""
|
| 214 |
+
- **Acc(Accuracy):** The proportion of identical preference results between the model and human annotations. Specifically, we first convert individual scores (ranks) into pairwise preferences and then calculate consistency with human annotations.
|
| 215 |
+
|
| 216 |
+
- **Kendall's tau:** Measures the ordinal association between two ranked variables.
|
| 217 |
+
|
| 218 |
+
$$
|
| 219 |
+
\tau = \frac{C-D}{\frac{1}{2}n(n-1)}
|
| 220 |
+
$$
|
| 221 |
+
|
| 222 |
+
where:
|
| 223 |
+
- $C$ is the number of concordant pairs,
|
| 224 |
+
- $D$ is the number of discordant pairs,
|
| 225 |
+
- $n$ is the number of pairs.
|
| 226 |
+
|
| 227 |
+
- **Spearman's Rank Correlation Coefficient:** Measures the strength and direction of the association between two ranked variables.
|
| 228 |
+
|
| 229 |
+
$$
|
| 230 |
+
\rho = 1 - \frac{6 \sum d_i^2}{n(n^2 - 1)}
|
| 231 |
+
$$
|
| 232 |
+
|
| 233 |
+
where:
|
| 234 |
+
- $d_i$ is the difference between the ranks of corresponding elements in the two lists,
|
| 235 |
+
- $n$ is the number of elements.
|
| 236 |
+
""",unsafe_allow_html=True)
|
| 237 |
elif page == "Data and File format":
|
| 238 |
st.header("Data and File format")
|
| 239 |
st.markdown("""
|