Spaces:
Sleeping
Sleeping
Upload 4 files
Browse files- app.py +107 -0
- graphGen3.py +709 -0
- graphGen4.py +681 -0
- graphGen5.py +776 -0
app.py
ADDED
|
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import time
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import networkx as nx
|
| 5 |
+
|
| 6 |
+
# ---- Import generators (NO circular imports) ----
|
| 7 |
+
from graphGen3 import NetworkGenerator as NetworkGenerator3
|
| 8 |
+
from graphGen4 import NetworkGenerator as NetworkGenerator4
|
| 9 |
+
from graphGen5 import NetworkGenerator as NetworkGenerator5
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
# ---- Registry of available generators ----
|
| 13 |
+
GENERATOR_MAP = {
|
| 14 |
+
"graphGen3": NetworkGenerator3,
|
| 15 |
+
"graphGen4": NetworkGenerator4,
|
| 16 |
+
"graphGen5": NetworkGenerator5,
|
| 17 |
+
|
| 18 |
+
}
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def generate_network(generator_name, size, variant, topology):
|
| 22 |
+
"""
|
| 23 |
+
Gradio callback: generate a network using the selected generator.
|
| 24 |
+
"""
|
| 25 |
+
GeneratorClass = GENERATOR_MAP[generator_name]
|
| 26 |
+
|
| 27 |
+
generator = GeneratorClass(
|
| 28 |
+
size=size,
|
| 29 |
+
variant=variant,
|
| 30 |
+
topology=topology
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
start = time.time()
|
| 34 |
+
graph = generator.generate()
|
| 35 |
+
elapsed = time.time() - start
|
| 36 |
+
|
| 37 |
+
stats = (
|
| 38 |
+
f"Generator: {generator_name}\n"
|
| 39 |
+
f"Operation Time: {elapsed:.4f} seconds\n"
|
| 40 |
+
f"Nodes: {len(graph.nodes())}\n"
|
| 41 |
+
f"Edges: {len(graph.edges())}"
|
| 42 |
+
)
|
| 43 |
+
|
| 44 |
+
# ---- Plot ----
|
| 45 |
+
fig, ax = plt.subplots(figsize=(8, 8))
|
| 46 |
+
pos = {node: (node[1], -node[0]) for node in graph.nodes()}
|
| 47 |
+
nx.draw(
|
| 48 |
+
graph,
|
| 49 |
+
pos,
|
| 50 |
+
ax=ax,
|
| 51 |
+
with_labels=True,
|
| 52 |
+
node_size=300,
|
| 53 |
+
font_size=8
|
| 54 |
+
)
|
| 55 |
+
ax.set_title(f"{generator_name} | {size}, {variant}, {topology}")
|
| 56 |
+
ax.grid(True)
|
| 57 |
+
|
| 58 |
+
return fig, stats
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
# ---- Gradio UI ----
|
| 62 |
+
with gr.Blocks(title="Network Generator") as demo:
|
| 63 |
+
gr.Markdown("# Network Generator")
|
| 64 |
+
|
| 65 |
+
with gr.Row():
|
| 66 |
+
generator_choice = gr.Dropdown(
|
| 67 |
+
choices=list(GENERATOR_MAP.keys()),
|
| 68 |
+
value="graphGen3",
|
| 69 |
+
label="Generator Logic"
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
with gr.Row():
|
| 73 |
+
size = gr.Dropdown(
|
| 74 |
+
choices=["S", "M", "L"],
|
| 75 |
+
value="S",
|
| 76 |
+
label="Size"
|
| 77 |
+
)
|
| 78 |
+
variant = gr.Dropdown(
|
| 79 |
+
choices=["F", "R"],
|
| 80 |
+
value="F",
|
| 81 |
+
label="Variant"
|
| 82 |
+
)
|
| 83 |
+
topology = gr.Dropdown(
|
| 84 |
+
choices=["highly_connected", "bottlenecks", "linear"],
|
| 85 |
+
value="highly_connected",
|
| 86 |
+
label="Topology"
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
generate_btn = gr.Button("Generate Network")
|
| 90 |
+
|
| 91 |
+
with gr.Row():
|
| 92 |
+
plot_out = gr.Plot(label="Generated Graph")
|
| 93 |
+
stats_out = gr.Textbox(
|
| 94 |
+
label="Statistics",
|
| 95 |
+
lines=6,
|
| 96 |
+
interactive=False
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
generate_btn.click(
|
| 100 |
+
fn=generate_network,
|
| 101 |
+
inputs=[generator_choice, size, variant, topology],
|
| 102 |
+
outputs=[plot_out, stats_out]
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
if __name__ == "__main__":
|
| 107 |
+
demo.launch()
|
graphGen3.py
ADDED
|
@@ -0,0 +1,709 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import networkx as nx
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
class NetworkGenerator:
|
| 8 |
+
def __init__(self, size='S', variant='F', topology='highly_connected'):
|
| 9 |
+
self.size = size.upper()
|
| 10 |
+
self.variant = variant.upper()
|
| 11 |
+
self.topology = topology.lower()
|
| 12 |
+
|
| 13 |
+
if self.topology not in ['highly_connected', 'bottlenecks', 'linear']:
|
| 14 |
+
raise ValueError("topology must be: 'highly_connected', 'bottlenecks', or 'linear'")
|
| 15 |
+
|
| 16 |
+
# Configuration based on size (small, middle, large)
|
| 17 |
+
self.size_config = {
|
| 18 |
+
'S': {'grid': 4, 'node_factor': 0.4, 'diag_weights': [1, 4]},
|
| 19 |
+
'M': {'grid': 8, 'node_factor': 0.4, 'diag_weights': [1, 4]},
|
| 20 |
+
'L': {'grid': 16, 'node_factor': 0.4, 'diag_weights': [1, 8]},
|
| 21 |
+
}
|
| 22 |
+
|
| 23 |
+
if self.size not in self.size_config:
|
| 24 |
+
raise ValueError("Invalid size. Choose 'S', 'M', or 'L'.")
|
| 25 |
+
if self.variant not in ['F', 'R']:
|
| 26 |
+
raise ValueError("Invalid variant. Choose 'F' (fixed) or 'R' (random).")
|
| 27 |
+
|
| 28 |
+
# Scenario setup
|
| 29 |
+
self.grid_size = self.size_config[self.size]['grid']
|
| 30 |
+
self.node_factor = self.size_config[self.size]['node_factor']
|
| 31 |
+
self.weight_dist = self.size_config[self.size]['diag_weights']
|
| 32 |
+
|
| 33 |
+
# Graph and node storage
|
| 34 |
+
self.graph = None
|
| 35 |
+
self.nodes_list = None
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def generate(self):
|
| 39 |
+
"""Generate a connected network representing rooms in a building."""
|
| 40 |
+
|
| 41 |
+
max_attempts = 5 # retry limit
|
| 42 |
+
|
| 43 |
+
for attempt in range(max_attempts):
|
| 44 |
+
self._initialize_graph()
|
| 45 |
+
self._add_nodes()
|
| 46 |
+
|
| 47 |
+
nodes = list(self.graph.nodes())
|
| 48 |
+
if not nodes:
|
| 49 |
+
continue
|
| 50 |
+
|
| 51 |
+
# --- STEP 1: CONNECTIVITY (NEARBY ROOMS ONLY) ---
|
| 52 |
+
connected = set()
|
| 53 |
+
remaining = set(nodes)
|
| 54 |
+
|
| 55 |
+
# Start with a random initial room
|
| 56 |
+
current = random.choice(nodes)
|
| 57 |
+
connected.add(current)
|
| 58 |
+
remaining.remove(current)
|
| 59 |
+
|
| 60 |
+
while remaining:
|
| 61 |
+
|
| 62 |
+
# Candidate rooms: within distance <= 2 of ANY connected room
|
| 63 |
+
candidates = [
|
| 64 |
+
n for n in remaining
|
| 65 |
+
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
|
| 66 |
+
]
|
| 67 |
+
|
| 68 |
+
if candidates:
|
| 69 |
+
candidate = random.choice(candidates)
|
| 70 |
+
else:
|
| 71 |
+
# fallback: pick any unconnected room
|
| 72 |
+
candidate = random.choice(list(remaining))
|
| 73 |
+
|
| 74 |
+
# Find connected neighbors near the candidate
|
| 75 |
+
neighbors = [
|
| 76 |
+
c for c in connected
|
| 77 |
+
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
if neighbors:
|
| 81 |
+
n = random.choice(neighbors)
|
| 82 |
+
else:
|
| 83 |
+
# fallback: ANY connected node
|
| 84 |
+
n = random.choice(list(connected))
|
| 85 |
+
|
| 86 |
+
# --- Intersection checks ---
|
| 87 |
+
valid = True
|
| 88 |
+
|
| 89 |
+
# Straight edge
|
| 90 |
+
if n[0] == candidate[0] or n[1] == candidate[1]:
|
| 91 |
+
if self._straight_edge_intersects(n, candidate):
|
| 92 |
+
valid = False
|
| 93 |
+
|
| 94 |
+
# Diagonal edge
|
| 95 |
+
elif abs(n[0] - candidate[0]) == abs(n[1] - candidate[1]):
|
| 96 |
+
if self._diagonal_intersects(n, candidate):
|
| 97 |
+
valid = False
|
| 98 |
+
|
| 99 |
+
else:
|
| 100 |
+
# Not straight or diagonal → forced but accepted
|
| 101 |
+
valid = False
|
| 102 |
+
|
| 103 |
+
# Add the edge anyway (forced connectivity)
|
| 104 |
+
self.graph.add_edge(n, candidate)
|
| 105 |
+
|
| 106 |
+
# Mark candidate as connected
|
| 107 |
+
connected.add(candidate)
|
| 108 |
+
remaining.remove(candidate)
|
| 109 |
+
|
| 110 |
+
# --- STEP 2: ADD TOPOLOGY-SPECIFIC EXTRA EDGES ---
|
| 111 |
+
self._add_edges()
|
| 112 |
+
|
| 113 |
+
# --- STEP 3: REMOVE INTERSECTIONS & RECONNECT ---
|
| 114 |
+
self._remove_intersections()
|
| 115 |
+
|
| 116 |
+
# --- STEP 4: FINAL CONNECTIVITY CHECK ---
|
| 117 |
+
if nx.is_connected(self.graph):
|
| 118 |
+
return self.graph
|
| 119 |
+
|
| 120 |
+
raise RuntimeError("Failed to generate a connected network after several attempts")
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def _initialize_graph(self):
|
| 124 |
+
self.graph = nx.Graph()
|
| 125 |
+
# Start in the middle region instead of (0,0)
|
| 126 |
+
margin = max(1, self.grid_size // 4)
|
| 127 |
+
low, high = margin, self.grid_size - margin
|
| 128 |
+
x = random.randint(low, high)
|
| 129 |
+
y = random.randint(low, high)
|
| 130 |
+
coords = np.array([x, y])
|
| 131 |
+
flags = np.zeros(4, dtype=int)
|
| 132 |
+
self.nodes_list = [[coords, flags]]
|
| 133 |
+
self.graph.add_node(tuple(coords))
|
| 134 |
+
|
| 135 |
+
def _compute_nodes(self):
|
| 136 |
+
total_possible = (self.grid_size + 1) ** 2
|
| 137 |
+
if self.variant == 'F':
|
| 138 |
+
return int(self.node_factor * total_possible)
|
| 139 |
+
else:
|
| 140 |
+
return int(random.uniform(0.4, 0.7) * total_possible)
|
| 141 |
+
|
| 142 |
+
def _add_nodes(self):
|
| 143 |
+
"""Place nodes mostly in the middle region (cluster logic)."""
|
| 144 |
+
total_nodes = self._compute_nodes()
|
| 145 |
+
|
| 146 |
+
# Middle region boundaries
|
| 147 |
+
margin = max(1, self.grid_size // 4)
|
| 148 |
+
low, high = margin, self.grid_size - margin
|
| 149 |
+
|
| 150 |
+
attempts = 0
|
| 151 |
+
while len(self.graph.nodes()) < total_nodes and attempts < 5000:
|
| 152 |
+
attempts += 1
|
| 153 |
+
x = random.randint(low, high)
|
| 154 |
+
y = random.randint(low, high)
|
| 155 |
+
if (x, y) not in self.graph:
|
| 156 |
+
self.graph.add_node((x, y))
|
| 157 |
+
|
| 158 |
+
def _add_random_neighbors(self):
|
| 159 |
+
if not self.nodes_list:
|
| 160 |
+
return
|
| 161 |
+
|
| 162 |
+
predecessor_entry = self.nodes_list[0]
|
| 163 |
+
coords, _ = predecessor_entry
|
| 164 |
+
rand_neighbors = random.randint(1, 4)
|
| 165 |
+
|
| 166 |
+
for _ in range(rand_neighbors):
|
| 167 |
+
direction = random.choice(['V', 'H'])
|
| 168 |
+
distance = random.choices([1, 2], weights=self.weight_dist, k=1)[0]
|
| 169 |
+
new_coords = self._get_new_node(coords, direction, distance)
|
| 170 |
+
|
| 171 |
+
if new_coords is not None and tuple(new_coords) not in self.graph:
|
| 172 |
+
self.graph.add_node(tuple(new_coords))
|
| 173 |
+
flags = np.zeros(4, dtype=int)
|
| 174 |
+
self.nodes_list.append([new_coords, flags])
|
| 175 |
+
self._update_neighbor_flags(coords, new_coords)
|
| 176 |
+
|
| 177 |
+
self.nodes_list.pop(0)
|
| 178 |
+
|
| 179 |
+
def _get_new_node(self, coords, direction, dist):
|
| 180 |
+
x, y = coords
|
| 181 |
+
if direction == 'V':
|
| 182 |
+
if random.choice([True, False]) and x + dist <= self.grid_size:
|
| 183 |
+
return np.array([x + dist, y])
|
| 184 |
+
elif x - dist >= 0:
|
| 185 |
+
return np.array([x - dist, y])
|
| 186 |
+
elif direction == 'H':
|
| 187 |
+
if random.choice([True, False]) and y + dist <= self.grid_size:
|
| 188 |
+
return np.array([x, y + dist])
|
| 189 |
+
elif y - dist >= 0:
|
| 190 |
+
return np.array([x, y - dist])
|
| 191 |
+
return None
|
| 192 |
+
|
| 193 |
+
def _update_neighbor_flags(self, predecessor_coords, new_coords):
|
| 194 |
+
px, py = predecessor_coords
|
| 195 |
+
nx_, ny = new_coords
|
| 196 |
+
|
| 197 |
+
# Find indices
|
| 198 |
+
predecessor_idx = next((i for i, n in enumerate(self.nodes_list) if np.array_equal(n[0], predecessor_coords)), None)
|
| 199 |
+
new_node_idx = next((i for i, n in enumerate(self.nodes_list) if np.array_equal(n[0], new_coords)), None)
|
| 200 |
+
|
| 201 |
+
if predecessor_idx is None or new_node_idx is None:
|
| 202 |
+
return
|
| 203 |
+
|
| 204 |
+
# Directional flags: [up, down, left, right]
|
| 205 |
+
if nx_ < px: # new above
|
| 206 |
+
self.nodes_list[predecessor_idx][1][0] = 1
|
| 207 |
+
self.nodes_list[new_node_idx][1][1] = 1
|
| 208 |
+
elif nx_ > px: # new below
|
| 209 |
+
self.nodes_list[predecessor_idx][1][1] = 1
|
| 210 |
+
self.nodes_list[new_node_idx][1][0] = 1
|
| 211 |
+
elif ny < py: # new left
|
| 212 |
+
self.nodes_list[predecessor_idx][1][2] = 1
|
| 213 |
+
self.nodes_list[new_node_idx][1][3] = 1
|
| 214 |
+
elif ny > py: # new right
|
| 215 |
+
self.nodes_list[predecessor_idx][1][3] = 1
|
| 216 |
+
self.nodes_list[new_node_idx][1][2] = 1
|
| 217 |
+
|
| 218 |
+
def _compute_edge_count(self):
|
| 219 |
+
total_nodes = len(self.graph.nodes())
|
| 220 |
+
if self.variant == 'F':
|
| 221 |
+
return int(1.5 * total_nodes)
|
| 222 |
+
else:
|
| 223 |
+
return int(random.uniform(1.5, 2.5) * total_nodes)
|
| 224 |
+
|
| 225 |
+
def _add_edges(self):
|
| 226 |
+
nodes = list(self.graph.nodes())
|
| 227 |
+
total_edges = self._compute_edge_count()
|
| 228 |
+
|
| 229 |
+
if self.topology == "highly_connected":
|
| 230 |
+
self._add_cluster_dense(nodes, total_edges)
|
| 231 |
+
|
| 232 |
+
elif self.topology == "bottlenecks":
|
| 233 |
+
self._add_cluster_sparse(nodes, total_edges)
|
| 234 |
+
self._add_cluster_bottleneck(nodes)
|
| 235 |
+
|
| 236 |
+
elif self.topology == "linear":
|
| 237 |
+
self._make_linear(nodes)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def _add_straight_edges_if_no_intersection(self, nodes, max_edges):
|
| 241 |
+
count = 0
|
| 242 |
+
for i in range(len(nodes)):
|
| 243 |
+
for j in range(i + 1, len(nodes)):
|
| 244 |
+
if count >= max_edges:
|
| 245 |
+
return
|
| 246 |
+
x1, y1 = nodes[i]
|
| 247 |
+
x2, y2 = nodes[j]
|
| 248 |
+
if (x1 == x2 or y1 == y2) and not self.graph.has_edge(nodes[i], nodes[j]):
|
| 249 |
+
self.graph.add_edge(nodes[i], nodes[j])
|
| 250 |
+
count += 1
|
| 251 |
+
|
| 252 |
+
def _straight_edge_intersects(self, n1, n2):
|
| 253 |
+
"""Check if a straight (H/V) edge between n1–n2 intersects existing edges."""
|
| 254 |
+
x1, y1 = n1
|
| 255 |
+
x2, y2 = n2
|
| 256 |
+
|
| 257 |
+
# Only straight edges
|
| 258 |
+
if not (x1 == x2 or y1 == y2):
|
| 259 |
+
return True
|
| 260 |
+
|
| 261 |
+
# Ensure consistent ordering
|
| 262 |
+
if (x1, y1) > (x2, y2):
|
| 263 |
+
n1, n2 = n2, n1
|
| 264 |
+
x1, y1 = n1
|
| 265 |
+
x2, y2 = n2
|
| 266 |
+
|
| 267 |
+
for a, b in self.graph.edges():
|
| 268 |
+
if {a, b} == {n1, n2}:
|
| 269 |
+
continue
|
| 270 |
+
|
| 271 |
+
ax, ay = a
|
| 272 |
+
bx, by = b
|
| 273 |
+
|
| 274 |
+
# Horizontal edge
|
| 275 |
+
if y1 == y2:
|
| 276 |
+
if ay == by == y1:
|
| 277 |
+
# overlap?
|
| 278 |
+
if max(ax, bx) >= min(x1, x2) and min(ax, bx) <= max(x1, x2):
|
| 279 |
+
return True
|
| 280 |
+
|
| 281 |
+
# Vertical edge
|
| 282 |
+
if x1 == x2:
|
| 283 |
+
if ax == bx == x1:
|
| 284 |
+
if max(ay, by) >= min(y1, y2) and min(ay, by) <= max(y1, y2):
|
| 285 |
+
return True
|
| 286 |
+
|
| 287 |
+
return False
|
| 288 |
+
|
| 289 |
+
def _diagonal_intersects(self, n1, n2):
|
| 290 |
+
x1, y1 = n1
|
| 291 |
+
x2, y2 = n2
|
| 292 |
+
|
| 293 |
+
for a, b in self.graph.edges():
|
| 294 |
+
ax, ay = a
|
| 295 |
+
bx, by = b
|
| 296 |
+
|
| 297 |
+
# Only check against diagonal edges
|
| 298 |
+
if abs(ax - bx) == abs(ay - by):
|
| 299 |
+
# Check if bounding boxes overlap
|
| 300 |
+
if not (max(x1, x2) < min(ax, bx) or min(x1, x2) > max(ax, bx)):
|
| 301 |
+
if not (max(y1, y2) < min(ay, by) or min(y1, y2) > max(ay, by)):
|
| 302 |
+
return True
|
| 303 |
+
|
| 304 |
+
return False
|
| 305 |
+
|
| 306 |
+
|
| 307 |
+
def _generate_diagonal_edges(self, nodes, max_edges):
|
| 308 |
+
count = 0
|
| 309 |
+
for i in range(len(nodes)):
|
| 310 |
+
for j in range(i + 1, len(nodes)):
|
| 311 |
+
if count >= max_edges:
|
| 312 |
+
return
|
| 313 |
+
x1, y1 = nodes[i]
|
| 314 |
+
x2, y2 = nodes[j]
|
| 315 |
+
if abs(x1 - x2) == abs(y1 - y2) and not self.graph.has_edge(nodes[i], nodes[j]):
|
| 316 |
+
self.graph.add_edge(nodes[i], nodes[j])
|
| 317 |
+
count += 1
|
| 318 |
+
|
| 319 |
+
def _make_linear(self, nodes):
|
| 320 |
+
# Sort nodes by x then by y so the backbone moves roughly top→down or left→right
|
| 321 |
+
nodes_sorted = sorted(nodes, key=lambda x: (x[0], x[1]))
|
| 322 |
+
|
| 323 |
+
# Build the main backbone (no diagonal, only straight)
|
| 324 |
+
prev = nodes_sorted[0]
|
| 325 |
+
for nxt in nodes_sorted[1:]:
|
| 326 |
+
x1, y1 = prev
|
| 327 |
+
x2, y2 = nxt
|
| 328 |
+
|
| 329 |
+
# ONLY connect if same row or same column
|
| 330 |
+
if x1 == x2 or y1 == y2:
|
| 331 |
+
self.graph.add_edge(prev, nxt)
|
| 332 |
+
prev = nxt
|
| 333 |
+
else:
|
| 334 |
+
# If diagonal, find a 1-step straight intermediate
|
| 335 |
+
# Move horizontally first
|
| 336 |
+
if x1 != x2:
|
| 337 |
+
step = (x1 + (1 if x2 > x1 else -1), y1)
|
| 338 |
+
if step in nodes:
|
| 339 |
+
self.graph.add_edge(prev, step)
|
| 340 |
+
self.graph.add_edge(step, nxt)
|
| 341 |
+
prev = nxt
|
| 342 |
+
continue
|
| 343 |
+
|
| 344 |
+
# Move vertically
|
| 345 |
+
if y1 != y2:
|
| 346 |
+
step = (x1, y1 + (1 if y2 > y1 else -1))
|
| 347 |
+
if step in nodes:
|
| 348 |
+
self.graph.add_edge(prev, step)
|
| 349 |
+
self.graph.add_edge(step, nxt)
|
| 350 |
+
prev = nxt
|
| 351 |
+
continue
|
| 352 |
+
|
| 353 |
+
# Add occasional side branches (0.15 = 15% chance)
|
| 354 |
+
for node in nodes_sorted:
|
| 355 |
+
if random.random() < 0.15:
|
| 356 |
+
x, y = node
|
| 357 |
+
# choose one of the 4 permissible directions
|
| 358 |
+
candidates = [(x+1,y),(x-1,y),(x,y+1),(x,y-1)]
|
| 359 |
+
random.shuffle(candidates)
|
| 360 |
+
|
| 361 |
+
for c in candidates:
|
| 362 |
+
if c in nodes and not self.graph.has_edge(node, c):
|
| 363 |
+
# Ensure node doesn't exceed degree 3
|
| 364 |
+
if self.graph.degree(node) < 3 and self.graph.degree(c) < 3:
|
| 365 |
+
self.graph.add_edge(node, c)
|
| 366 |
+
break
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
|
| 370 |
+
def _add_sparse_edges(self, nodes):
|
| 371 |
+
# create a moderate number of edges but not dense
|
| 372 |
+
for i in range(len(nodes)):
|
| 373 |
+
for j in range(i+1, len(nodes)):
|
| 374 |
+
if random.random() < 0.15: # sparse edges
|
| 375 |
+
self.graph.add_edge(nodes[i], nodes[j])
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def _create_bottleneck(self, nodes):
|
| 379 |
+
# Split graph into left/right sets (or top/bottom)
|
| 380 |
+
left = [n for n in nodes if n[0] <= self.grid_size // 2]
|
| 381 |
+
right = [n for n in nodes if n not in left]
|
| 382 |
+
|
| 383 |
+
# pick random chokepoint nodes
|
| 384 |
+
l = random.choice(left)
|
| 385 |
+
r = random.choice(right)
|
| 386 |
+
|
| 387 |
+
# force 1 bottleneck edge
|
| 388 |
+
self.graph.add_edge(l, r)
|
| 389 |
+
|
| 390 |
+
def _add_dense_edges(self, nodes):
|
| 391 |
+
# add all straight edges
|
| 392 |
+
for i in range(len(nodes)):
|
| 393 |
+
for j in range(i+1, len(nodes)):
|
| 394 |
+
x1, y1 = nodes[i]
|
| 395 |
+
x2, y2 = nodes[j]
|
| 396 |
+
|
| 397 |
+
# Straight connections
|
| 398 |
+
if x1 == x2 or y1 == y2:
|
| 399 |
+
self.graph.add_edge(nodes[i], nodes[j])
|
| 400 |
+
|
| 401 |
+
# Diagonal connections
|
| 402 |
+
if abs(x1 - x2) == abs(y1 - y2):
|
| 403 |
+
self.graph.add_edge(nodes[i], nodes[j])
|
| 404 |
+
|
| 405 |
+
def _add_cluster_dense(self, nodes, max_edges):
|
| 406 |
+
edges_added = 0
|
| 407 |
+
random.shuffle(nodes)
|
| 408 |
+
|
| 409 |
+
for i in range(len(nodes)):
|
| 410 |
+
for j in range(i+1, len(nodes)):
|
| 411 |
+
if edges_added >= max_edges:
|
| 412 |
+
return
|
| 413 |
+
n1, n2 = nodes[i], nodes[j]
|
| 414 |
+
|
| 415 |
+
# Straight edge
|
| 416 |
+
if (n1[0] == n2[0] or n1[1] == n2[1]):
|
| 417 |
+
if not self._straight_edge_intersects(n1, n2):
|
| 418 |
+
self.graph.add_edge(n1, n2)
|
| 419 |
+
edges_added += 1
|
| 420 |
+
continue
|
| 421 |
+
|
| 422 |
+
# Diagonal
|
| 423 |
+
if abs(n1[0] - n2[0]) == abs(n1[1] - n2[1]):
|
| 424 |
+
if not self._diagonal_intersects(n1, n2):
|
| 425 |
+
self.graph.add_edge(n1, n2)
|
| 426 |
+
edges_added += 1
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def _add_cluster_sparse(self, nodes, max_edges):
|
| 430 |
+
edges_added = 0
|
| 431 |
+
random.shuffle(nodes)
|
| 432 |
+
|
| 433 |
+
for i in range(len(nodes)):
|
| 434 |
+
for j in range(i+1, len(nodes)):
|
| 435 |
+
if edges_added >= max_edges:
|
| 436 |
+
return
|
| 437 |
+
|
| 438 |
+
if random.random() < 0.15: # sparse like your C
|
| 439 |
+
n1, n2 = nodes[i], nodes[j]
|
| 440 |
+
|
| 441 |
+
# straight only for sparsity
|
| 442 |
+
if (n1[0] == n2[0] or n1[1] == n2[1]) and \
|
| 443 |
+
not self._straight_edge_intersects(n1, n2):
|
| 444 |
+
self.graph.add_edge(n1, n2)
|
| 445 |
+
edges_added += 1
|
| 446 |
+
|
| 447 |
+
|
| 448 |
+
def _add_cluster_bottleneck(self, nodes):
|
| 449 |
+
mid = self.grid_size // 2
|
| 450 |
+
|
| 451 |
+
left = [n for n in nodes if n[0] <= mid]
|
| 452 |
+
right = [n for n in nodes if n not in left]
|
| 453 |
+
|
| 454 |
+
if not left or not right:
|
| 455 |
+
return
|
| 456 |
+
|
| 457 |
+
a = random.choice(left)
|
| 458 |
+
b = random.choice(right)
|
| 459 |
+
|
| 460 |
+
if not self._straight_edge_intersects(a, b):
|
| 461 |
+
self.graph.add_edge(a, b)
|
| 462 |
+
|
| 463 |
+
|
| 464 |
+
# --------------------
|
| 465 |
+
# Intersection utilities
|
| 466 |
+
# --------------------
|
| 467 |
+
def _orientation(self, p, q, r):
|
| 468 |
+
"""Return orientation for ordered triplet (p, q, r).
|
| 469 |
+
0 = collinear, 1 = clockwise, 2 = counterclockwise."""
|
| 470 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 471 |
+
val = (qy - py) * (rx - qx) - (qx - px) * (ry - qy)
|
| 472 |
+
if val == 0:
|
| 473 |
+
return 0
|
| 474 |
+
return 1 if val > 0 else 2
|
| 475 |
+
|
| 476 |
+
def _on_segment(self, p, q, r):
|
| 477 |
+
"""Check if point q lies on segment pr."""
|
| 478 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 479 |
+
return (min(px, rx) <= qx <= max(px, rx) and
|
| 480 |
+
min(py, ry) <= qy <= max(py, ry))
|
| 481 |
+
|
| 482 |
+
def _segments_intersect(self, a, b, c, d):
|
| 483 |
+
"""Return True if segments ab and cd intersect (excluding shared endpoints)."""
|
| 484 |
+
# Shared endpoints do NOT count as intersections
|
| 485 |
+
if a in (c, d) or b in (c, d):
|
| 486 |
+
return False
|
| 487 |
+
|
| 488 |
+
o1 = self._orientation(a, b, c)
|
| 489 |
+
o2 = self._orientation(a, b, d)
|
| 490 |
+
o3 = self._orientation(c, d, a)
|
| 491 |
+
o4 = self._orientation(c, d, b)
|
| 492 |
+
|
| 493 |
+
# General case
|
| 494 |
+
if o1 != o2 and o3 != o4:
|
| 495 |
+
return True
|
| 496 |
+
|
| 497 |
+
# Special cases (collinear)
|
| 498 |
+
if o1 == 0 and self._on_segment(a, c, b):
|
| 499 |
+
return True
|
| 500 |
+
if o2 == 0 and self._on_segment(a, d, b):
|
| 501 |
+
return True
|
| 502 |
+
if o3 == 0 and self._on_segment(c, a, d):
|
| 503 |
+
return True
|
| 504 |
+
if o4 == 0 and self._on_segment(c, b, d):
|
| 505 |
+
return True
|
| 506 |
+
|
| 507 |
+
return False
|
| 508 |
+
|
| 509 |
+
def _would_create_intersection(self, u, v):
|
| 510 |
+
"""Check whether adding edge (u,v) would intersect any existing edge."""
|
| 511 |
+
for x, y in self.graph.edges():
|
| 512 |
+
# ignore if touching endpoints
|
| 513 |
+
if u in (x, y) or v in (x, y):
|
| 514 |
+
continue
|
| 515 |
+
if self._segments_intersect(u, v, x, y):
|
| 516 |
+
return True
|
| 517 |
+
return False
|
| 518 |
+
|
| 519 |
+
def _remove_intersections(self):
|
| 520 |
+
"""
|
| 521 |
+
Remove intersecting edges and attempt to reconnect components using
|
| 522 |
+
nearest-neighbor edges (prefer Chebyshev distance <= 2 as requested).
|
| 523 |
+
"""
|
| 524 |
+
max_passes = 10
|
| 525 |
+
pass_no = 0
|
| 526 |
+
total_removed = 0
|
| 527 |
+
|
| 528 |
+
while pass_no < max_passes:
|
| 529 |
+
pass_no += 1
|
| 530 |
+
edges = list(self.graph.edges())
|
| 531 |
+
intersections = []
|
| 532 |
+
|
| 533 |
+
# Find all intersecting edge pairs
|
| 534 |
+
for i in range(len(edges)):
|
| 535 |
+
a, b = edges[i]
|
| 536 |
+
for j in range(i + 1, len(edges)):
|
| 537 |
+
c, d = edges[j]
|
| 538 |
+
if self._segments_intersect(a, b, c, d):
|
| 539 |
+
intersections.append((a, b, c, d))
|
| 540 |
+
|
| 541 |
+
if not intersections:
|
| 542 |
+
break # no intersections left
|
| 543 |
+
|
| 544 |
+
# Remove longer edge of each intersecting pair (if still present)
|
| 545 |
+
removed_this_pass = 0
|
| 546 |
+
for a, b, c, d in intersections:
|
| 547 |
+
if not self.graph.has_edge(a, b) or not self.graph.has_edge(c, d):
|
| 548 |
+
continue # already removed in this pass
|
| 549 |
+
|
| 550 |
+
len1 = (a[0]-b[0])**2 + (a[1]-b[1])**2
|
| 551 |
+
len2 = (c[0]-d[0])**2 + (c[1]-d[1])**2
|
| 552 |
+
|
| 553 |
+
if len1 >= len2:
|
| 554 |
+
try:
|
| 555 |
+
self.graph.remove_edge(a, b)
|
| 556 |
+
removed_this_pass += 1
|
| 557 |
+
except Exception:
|
| 558 |
+
pass
|
| 559 |
+
else:
|
| 560 |
+
try:
|
| 561 |
+
self.graph.remove_edge(c, d)
|
| 562 |
+
removed_this_pass += 1
|
| 563 |
+
except Exception:
|
| 564 |
+
pass
|
| 565 |
+
|
| 566 |
+
total_removed += removed_this_pass
|
| 567 |
+
|
| 568 |
+
# After removals, try to reconnect components
|
| 569 |
+
self._attempt_reconnect_components(prefer_max_distance=2)
|
| 570 |
+
|
| 571 |
+
# Final try to reconnect if still disconnected
|
| 572 |
+
if not nx.is_connected(self.graph):
|
| 573 |
+
self._attempt_reconnect_components(prefer_max_distance=self.grid_size)
|
| 574 |
+
|
| 575 |
+
# One last pass to remove any intersections created during reconnection attempts
|
| 576 |
+
# but limit passes to avoid endless loops
|
| 577 |
+
final_edges = list(self.graph.edges())
|
| 578 |
+
for i in range(len(final_edges)):
|
| 579 |
+
a, b = final_edges[i]
|
| 580 |
+
for j in range(i+1, len(final_edges)):
|
| 581 |
+
c, d = final_edges[j]
|
| 582 |
+
if self._segments_intersect(a, b, c, d):
|
| 583 |
+
# break ties by removing longer edge
|
| 584 |
+
len1 = (a[0]-b[0])**2 + (a[1]-b[1])**2
|
| 585 |
+
len2 = (c[0]-d[0])**2 + (c[1]-d[1])**2
|
| 586 |
+
if len1 >= len2 and self.graph.has_edge(a,b):
|
| 587 |
+
self.graph.remove_edge(a, b)
|
| 588 |
+
total_removed += 1
|
| 589 |
+
elif self.graph.has_edge(c,d):
|
| 590 |
+
self.graph.remove_edge(c, d)
|
| 591 |
+
total_removed += 1
|
| 592 |
+
|
| 593 |
+
# Debug / informative print
|
| 594 |
+
# (You can replace prints with logging if preferred)
|
| 595 |
+
print(f"[cleanup] Removed {total_removed} intersecting edges after {pass_no} passes.")
|
| 596 |
+
|
| 597 |
+
def _attempt_reconnect_components(self, prefer_max_distance=2):
|
| 598 |
+
"""
|
| 599 |
+
Try to connect disconnected components by adding edges between the closest
|
| 600 |
+
node pairs across components. Preference: Chebyshev distance <= prefer_max_distance,
|
| 601 |
+
gradually relaxing up to grid_size if required. Avoid creating intersections when possible.
|
| 602 |
+
"""
|
| 603 |
+
comps = list(nx.connected_components(self.graph))
|
| 604 |
+
if len(comps) <= 1:
|
| 605 |
+
return
|
| 606 |
+
|
| 607 |
+
# Function to compute Chebyshev distance
|
| 608 |
+
def cheb(a, b):
|
| 609 |
+
return max(abs(a[0]-b[0]), abs(a[1]-b[1]))
|
| 610 |
+
|
| 611 |
+
# Build list of nodes per component
|
| 612 |
+
comp_nodes = [list(c) for c in comps]
|
| 613 |
+
|
| 614 |
+
# We'll try to connect components pairwise until a single component remains.
|
| 615 |
+
# Attempt multiple relaxation levels.
|
| 616 |
+
max_relax = self.grid_size
|
| 617 |
+
relax = prefer_max_distance
|
| 618 |
+
|
| 619 |
+
while relax <= max_relax and len(comp_nodes) > 1:
|
| 620 |
+
made_connection = False
|
| 621 |
+
|
| 622 |
+
# Try connecting each pair of components
|
| 623 |
+
i = 0
|
| 624 |
+
while i < len(comp_nodes) - 1:
|
| 625 |
+
j = i + 1
|
| 626 |
+
connected_this_round = False
|
| 627 |
+
while j < len(comp_nodes):
|
| 628 |
+
best_pair = None
|
| 629 |
+
best_dist = None
|
| 630 |
+
|
| 631 |
+
# find best node pair between comp i and comp j within relax
|
| 632 |
+
for u in comp_nodes[i]:
|
| 633 |
+
for v in comp_nodes[j]:
|
| 634 |
+
if u == v:
|
| 635 |
+
continue
|
| 636 |
+
d = cheb(u, v)
|
| 637 |
+
if d <= relax and (best_dist is None or d < best_dist):
|
| 638 |
+
best_pair = (u, v)
|
| 639 |
+
best_dist = d
|
| 640 |
+
|
| 641 |
+
if best_pair is not None:
|
| 642 |
+
u, v = best_pair
|
| 643 |
+
# avoid adding duplicate edge
|
| 644 |
+
if not self.graph.has_edge(u, v):
|
| 645 |
+
# prefer adding if it won't create intersection
|
| 646 |
+
if not self._would_create_intersection(u, v):
|
| 647 |
+
self.graph.add_edge(u, v)
|
| 648 |
+
made_connection = True
|
| 649 |
+
connected_this_round = True
|
| 650 |
+
# merge components lists
|
| 651 |
+
comp_nodes[i].extend(comp_nodes[j])
|
| 652 |
+
comp_nodes.pop(j)
|
| 653 |
+
break
|
| 654 |
+
else:
|
| 655 |
+
# If we cannot avoid intersection, try to find alternative pairs
|
| 656 |
+
# Try other candidate pairs within same two comps
|
| 657 |
+
alt_added = False
|
| 658 |
+
for uu in comp_nodes[i]:
|
| 659 |
+
for vv in comp_nodes[j]:
|
| 660 |
+
if uu == vv:
|
| 661 |
+
continue
|
| 662 |
+
d2 = cheb(uu, vv)
|
| 663 |
+
if d2 <= relax and not self.graph.has_edge(uu, vv):
|
| 664 |
+
if not self._would_create_intersection(uu, vv):
|
| 665 |
+
self.graph.add_edge(uu, vv)
|
| 666 |
+
alt_added = True
|
| 667 |
+
break
|
| 668 |
+
if alt_added:
|
| 669 |
+
break
|
| 670 |
+
if alt_added:
|
| 671 |
+
made_connection = True
|
| 672 |
+
connected_this_round = True
|
| 673 |
+
comp_nodes[i].extend(comp_nodes[j])
|
| 674 |
+
comp_nodes.pop(j)
|
| 675 |
+
break
|
| 676 |
+
else:
|
| 677 |
+
# as final resort, add the best_pair even if it creates intersection
|
| 678 |
+
# This ensures connectivity; intersections will be cleaned in a later pass.
|
| 679 |
+
self.graph.add_edge(u, v)
|
| 680 |
+
made_connection = True
|
| 681 |
+
connected_this_round = True
|
| 682 |
+
comp_nodes[i].extend(comp_nodes[j])
|
| 683 |
+
comp_nodes.pop(j)
|
| 684 |
+
break
|
| 685 |
+
else:
|
| 686 |
+
# no candidate between these two comps within relax
|
| 687 |
+
j += 1
|
| 688 |
+
|
| 689 |
+
if not connected_this_round:
|
| 690 |
+
i += 1 # move to next comp pair to try
|
| 691 |
+
# if connected_this_round we keep i same to attempt merging more into same comp
|
| 692 |
+
|
| 693 |
+
if not made_connection:
|
| 694 |
+
relax += 1 # relax distance constraint and try again
|
| 695 |
+
else:
|
| 696 |
+
# recompute components after merges
|
| 697 |
+
comps = list(nx.connected_components(self.graph))
|
| 698 |
+
comp_nodes = [list(c) for c in comps]
|
| 699 |
+
|
| 700 |
+
# End while: either connected or we've exhausted relax limit
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
def plot(self):
|
| 704 |
+
plt.figure(figsize=(8, 8))
|
| 705 |
+
pos = {node: (node[1], -node[0]) for node in self.graph.nodes()}
|
| 706 |
+
nx.draw(self.graph, pos, with_labels=True, node_size=300, font_size=8)
|
| 707 |
+
plt.title(f"Generated Network ({self.size}, {self.variant})")
|
| 708 |
+
plt.grid(True)
|
| 709 |
+
plt.show()
|
graphGen4.py
ADDED
|
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import networkx as nx
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class NetworkGenerator:
|
| 9 |
+
def __init__(self, size="S", variant="F", topology="highly_connected",
|
| 10 |
+
node_drop_fraction=0.2,
|
| 11 |
+
bottleneck_cluster_count=None,
|
| 12 |
+
bottleneck_edges_per_link=1):
|
| 13 |
+
"""
|
| 14 |
+
node_drop_fraction:
|
| 15 |
+
Fraction of all (grid+1)^2 possible positions that are deactivated (not allowed as nodes).
|
| 16 |
+
Example: 0.2 -> remove 1/5 of all grid positions.
|
| 17 |
+
|
| 18 |
+
bottleneck_cluster_count:
|
| 19 |
+
If None, chosen automatically based on size.
|
| 20 |
+
Larger => more small dense clusters.
|
| 21 |
+
|
| 22 |
+
bottleneck_edges_per_link:
|
| 23 |
+
Number of edges connecting consecutive clusters (these are the bottlenecks).
|
| 24 |
+
Keep this small (1 or 2) to preserve bottleneck behavior.
|
| 25 |
+
"""
|
| 26 |
+
self.size = size.upper()
|
| 27 |
+
self.variant = variant.upper()
|
| 28 |
+
self.topology = topology.lower()
|
| 29 |
+
|
| 30 |
+
if self.topology not in ["highly_connected", "bottlenecks", "linear"]:
|
| 31 |
+
raise ValueError("topology must be: 'highly_connected', 'bottlenecks', or 'linear'")
|
| 32 |
+
|
| 33 |
+
self.size_config = {
|
| 34 |
+
"S": {"grid": 4, "node_factor": 0.4, "diag_weights": [1, 4]},
|
| 35 |
+
"M": {"grid": 8, "node_factor": 0.4, "diag_weights": [1, 4]},
|
| 36 |
+
"L": {"grid": 16, "node_factor": 0.4, "diag_weights": [1, 8]},
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
if self.size not in self.size_config:
|
| 40 |
+
raise ValueError("Invalid size. Choose 'S', 'M', or 'L'.")
|
| 41 |
+
if self.variant not in ["F", "R"]:
|
| 42 |
+
raise ValueError("Invalid variant. Choose 'F' (fixed) or 'R' (random).")
|
| 43 |
+
|
| 44 |
+
self.grid_size = self.size_config[self.size]["grid"]
|
| 45 |
+
self.node_factor = self.size_config[self.size]["node_factor"]
|
| 46 |
+
self.weight_dist = self.size_config[self.size]["diag_weights"]
|
| 47 |
+
|
| 48 |
+
self.node_drop_fraction = float(node_drop_fraction)
|
| 49 |
+
if not (0.0 <= self.node_drop_fraction < 1.0):
|
| 50 |
+
raise ValueError("node_drop_fraction must be in [0.0, 1.0).")
|
| 51 |
+
|
| 52 |
+
if bottleneck_cluster_count is None:
|
| 53 |
+
self.bottleneck_cluster_count = {"S": 3, "M": 5, "L": 8}[self.size]
|
| 54 |
+
else:
|
| 55 |
+
self.bottleneck_cluster_count = int(bottleneck_cluster_count)
|
| 56 |
+
if self.bottleneck_cluster_count < 2:
|
| 57 |
+
raise ValueError("bottleneck_cluster_count must be >= 2.")
|
| 58 |
+
|
| 59 |
+
self.bottleneck_edges_per_link = int(bottleneck_edges_per_link)
|
| 60 |
+
if self.bottleneck_edges_per_link < 1:
|
| 61 |
+
raise ValueError("bottleneck_edges_per_link must be >= 1.")
|
| 62 |
+
|
| 63 |
+
self.graph = None
|
| 64 |
+
self.nodes_list = None
|
| 65 |
+
self.active_positions = None # allowed grid positions
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# --------------------
|
| 69 |
+
# Public API
|
| 70 |
+
# --------------------
|
| 71 |
+
def generate(self):
|
| 72 |
+
"""Generate a connected network representing rooms in a building."""
|
| 73 |
+
max_attempts = 8
|
| 74 |
+
|
| 75 |
+
for _ in range(max_attempts):
|
| 76 |
+
self._build_node_mask()
|
| 77 |
+
self._initialize_graph()
|
| 78 |
+
self._add_nodes()
|
| 79 |
+
|
| 80 |
+
nodes = list(self.graph.nodes())
|
| 81 |
+
if len(nodes) < 2:
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
# Topology-specific edge construction
|
| 85 |
+
if self.topology == "bottlenecks":
|
| 86 |
+
# Replace the usual step-1 connectivity with a cluster+bottleneck design.
|
| 87 |
+
self._build_bottleneck_clusters(nodes)
|
| 88 |
+
else:
|
| 89 |
+
# --- STEP 1: CONNECTIVITY (NEARBY ROOMS ONLY) ---
|
| 90 |
+
self._connect_all_nodes_by_nearby_growth(nodes)
|
| 91 |
+
|
| 92 |
+
# --- STEP 2: ADD TOPOLOGY-SPECIFIC EXTRA EDGES ---
|
| 93 |
+
self._add_edges()
|
| 94 |
+
|
| 95 |
+
# --- STEP 3: REMOVE INTERSECTIONS & RECONNECT ---
|
| 96 |
+
self._remove_intersections()
|
| 97 |
+
|
| 98 |
+
# --- STEP 4: FINAL CONNECTIVITY CHECK ---
|
| 99 |
+
if nx.is_connected(self.graph):
|
| 100 |
+
return self.graph
|
| 101 |
+
|
| 102 |
+
raise RuntimeError("Failed to generate a connected network after several attempts")
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
def plot(self):
|
| 106 |
+
plt.figure(figsize=(8, 8))
|
| 107 |
+
pos = {node: (node[1], -node[0]) for node in self.graph.nodes()}
|
| 108 |
+
nx.draw(self.graph, pos, with_labels=True, node_size=300, font_size=8)
|
| 109 |
+
plt.title(f"Generated Network ({self.size}, {self.variant}, {self.topology})")
|
| 110 |
+
plt.grid(True)
|
| 111 |
+
plt.show()
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
# --------------------
|
| 115 |
+
# Modification 1: deactivate 1/5 of all possible nodes
|
| 116 |
+
# --------------------
|
| 117 |
+
def _build_node_mask(self):
|
| 118 |
+
"""Deactivate node_drop_fraction of all (grid+1)^2 positions."""
|
| 119 |
+
all_positions = [
|
| 120 |
+
(x, y)
|
| 121 |
+
for x in range(self.grid_size + 1)
|
| 122 |
+
for y in range(self.grid_size + 1)
|
| 123 |
+
]
|
| 124 |
+
drop = int(self.node_drop_fraction * len(all_positions))
|
| 125 |
+
deactivated = set(random.sample(all_positions, drop)) if drop > 0 else set()
|
| 126 |
+
self.active_positions = set(all_positions) - deactivated
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
# --------------------
|
| 130 |
+
# Node initialization and placement
|
| 131 |
+
# --------------------
|
| 132 |
+
def _initialize_graph(self):
|
| 133 |
+
self.graph = nx.Graph()
|
| 134 |
+
|
| 135 |
+
# Prefer to seed from the middle region, but only from active positions.
|
| 136 |
+
margin = max(1, self.grid_size // 4)
|
| 137 |
+
low, high = margin, self.grid_size - margin
|
| 138 |
+
|
| 139 |
+
middle_active = [(x, y) for (x, y) in self.active_positions if low <= x <= high and low <= y <= high]
|
| 140 |
+
if middle_active:
|
| 141 |
+
seed = random.choice(middle_active)
|
| 142 |
+
else:
|
| 143 |
+
seed = random.choice(list(self.active_positions))
|
| 144 |
+
|
| 145 |
+
coords = np.array([seed[0], seed[1]])
|
| 146 |
+
flags = np.zeros(4, dtype=int)
|
| 147 |
+
self.nodes_list = [[coords, flags]]
|
| 148 |
+
self.graph.add_node(tuple(coords))
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def _compute_nodes(self):
|
| 152 |
+
total_possible = (self.grid_size + 1) ** 2
|
| 153 |
+
|
| 154 |
+
# Important: total_possible is still the full grid size;
|
| 155 |
+
# the mask reduces available positions and _add_nodes enforces that.
|
| 156 |
+
if self.variant == "F":
|
| 157 |
+
return int(self.node_factor * total_possible)
|
| 158 |
+
return int(random.uniform(0.4, 0.7) * total_possible)
|
| 159 |
+
|
| 160 |
+
|
| 161 |
+
def _add_nodes(self):
|
| 162 |
+
"""Place nodes mostly in the middle region (cluster logic), respecting active_positions."""
|
| 163 |
+
total_nodes = self._compute_nodes()
|
| 164 |
+
|
| 165 |
+
margin = max(1, self.grid_size // 4)
|
| 166 |
+
low, high = margin, self.grid_size - margin
|
| 167 |
+
|
| 168 |
+
attempts = 0
|
| 169 |
+
while len(self.graph.nodes()) < total_nodes and attempts < 8000:
|
| 170 |
+
attempts += 1
|
| 171 |
+
x = random.randint(low, high)
|
| 172 |
+
y = random.randint(low, high)
|
| 173 |
+
|
| 174 |
+
if (x, y) not in self.active_positions:
|
| 175 |
+
continue
|
| 176 |
+
if (x, y) not in self.graph:
|
| 177 |
+
self.graph.add_node((x, y))
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
# --------------------
|
| 181 |
+
# Connectivity for non-bottleneck modes
|
| 182 |
+
# --------------------
|
| 183 |
+
def _connect_all_nodes_by_nearby_growth(self, nodes):
|
| 184 |
+
"""Original connectivity step (nearby growth), unchanged except refactoring."""
|
| 185 |
+
connected = set()
|
| 186 |
+
remaining = set(nodes)
|
| 187 |
+
|
| 188 |
+
current = random.choice(nodes)
|
| 189 |
+
connected.add(current)
|
| 190 |
+
remaining.remove(current)
|
| 191 |
+
|
| 192 |
+
while remaining:
|
| 193 |
+
candidates = [
|
| 194 |
+
n for n in remaining
|
| 195 |
+
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
|
| 196 |
+
]
|
| 197 |
+
|
| 198 |
+
candidate = random.choice(candidates) if candidates else random.choice(list(remaining))
|
| 199 |
+
|
| 200 |
+
neighbors = [
|
| 201 |
+
c for c in connected
|
| 202 |
+
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
|
| 203 |
+
]
|
| 204 |
+
n = random.choice(neighbors) if neighbors else random.choice(list(connected))
|
| 205 |
+
|
| 206 |
+
# Keep your existing intersection checks (but connectivity is forced anyway)
|
| 207 |
+
if n[0] == candidate[0] or n[1] == candidate[1]:
|
| 208 |
+
_ = self._straight_edge_intersects(n, candidate)
|
| 209 |
+
elif abs(n[0] - candidate[0]) == abs(n[1] - candidate[1]):
|
| 210 |
+
_ = self._diagonal_intersects(n, candidate)
|
| 211 |
+
|
| 212 |
+
self.graph.add_edge(n, candidate)
|
| 213 |
+
|
| 214 |
+
connected.add(candidate)
|
| 215 |
+
remaining.remove(candidate)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
# --------------------
|
| 219 |
+
# Modification 2: Bottleneck = multiple small dense clusters connected by bottleneck edges
|
| 220 |
+
# --------------------
|
| 221 |
+
def _build_bottleneck_clusters(self, nodes):
|
| 222 |
+
"""
|
| 223 |
+
Build a number of small, internally dense "grids" (clusters),
|
| 224 |
+
then connect clusters with a small number of inter-cluster edges
|
| 225 |
+
which become the bottlenecks.
|
| 226 |
+
"""
|
| 227 |
+
# Clear any edges that might exist (seed node has no edges, but be explicit)
|
| 228 |
+
self.graph.remove_edges_from(list(self.graph.edges()))
|
| 229 |
+
|
| 230 |
+
clusters, centers = self._spatial_cluster_nodes(nodes, k=self.bottleneck_cluster_count)
|
| 231 |
+
|
| 232 |
+
# Make each cluster internally dense.
|
| 233 |
+
# We do "dense-without-intersections-when-possible" using your dense edge routine on subsets.
|
| 234 |
+
for cluster in clusters:
|
| 235 |
+
if len(cluster) < 2:
|
| 236 |
+
continue
|
| 237 |
+
|
| 238 |
+
# Ensure cluster is connected first using nearby growth inside the cluster
|
| 239 |
+
self._connect_cluster_by_nearby_growth(cluster)
|
| 240 |
+
|
| 241 |
+
# Then densify within the cluster
|
| 242 |
+
max_edges = max(1, int(3.0 * len(cluster))) # dense-ish without becoming fully complete
|
| 243 |
+
self._add_cluster_dense(list(cluster), max_edges=max_edges)
|
| 244 |
+
|
| 245 |
+
# Connect clusters in a chain (or near-chain) by centers.
|
| 246 |
+
order = sorted(range(len(clusters)), key=lambda i: (centers[i][0], centers[i][1]))
|
| 247 |
+
for a_idx, b_idx in zip(order[:-1], order[1:]):
|
| 248 |
+
self._add_bottleneck_links(clusters[a_idx], clusters[b_idx], self.bottleneck_edges_per_link)
|
| 249 |
+
|
| 250 |
+
# If something ended up disconnected (e.g., tiny clusters), reconnect lightly
|
| 251 |
+
if not nx.is_connected(self.graph):
|
| 252 |
+
self._attempt_reconnect_components(prefer_max_distance=2)
|
| 253 |
+
|
| 254 |
+
|
| 255 |
+
def _spatial_cluster_nodes(self, nodes, k):
|
| 256 |
+
"""
|
| 257 |
+
Simple spatial clustering:
|
| 258 |
+
- pick k random centers
|
| 259 |
+
- assign each node to closest center by Chebyshev distance
|
| 260 |
+
- return clusters + centers
|
| 261 |
+
"""
|
| 262 |
+
def cheb(a, b):
|
| 263 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 264 |
+
|
| 265 |
+
nodes = list(nodes)
|
| 266 |
+
if k >= len(nodes):
|
| 267 |
+
# each node its own cluster (degenerate)
|
| 268 |
+
return [[n] for n in nodes], nodes[:]
|
| 269 |
+
|
| 270 |
+
centers = random.sample(nodes, k)
|
| 271 |
+
clusters = [[] for _ in range(k)]
|
| 272 |
+
|
| 273 |
+
for n in nodes:
|
| 274 |
+
best_i = min(range(k), key=lambda i: cheb(n, centers[i]))
|
| 275 |
+
clusters[best_i].append(n)
|
| 276 |
+
|
| 277 |
+
# Recompute centers as medoid-ish: pick node closest to mean
|
| 278 |
+
new_centers = []
|
| 279 |
+
for c in clusters:
|
| 280 |
+
if not c:
|
| 281 |
+
new_centers.append(random.choice(nodes))
|
| 282 |
+
continue
|
| 283 |
+
mx = sum(p[0] for p in c) / len(c)
|
| 284 |
+
my = sum(p[1] for p in c) / len(c)
|
| 285 |
+
new_centers.append(min(c, key=lambda p: (p[0] - mx) ** 2 + (p[1] - my) ** 2))
|
| 286 |
+
|
| 287 |
+
# Remove empty clusters by merging them into nearest non-empty cluster
|
| 288 |
+
non_empty = [(c, ctr) for c, ctr in zip(clusters, new_centers) if len(c) > 0]
|
| 289 |
+
clusters = [c for c, _ in non_empty]
|
| 290 |
+
centers = [ctr for _, ctr in non_empty]
|
| 291 |
+
|
| 292 |
+
return clusters, centers
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
def _connect_cluster_by_nearby_growth(self, cluster_nodes):
|
| 296 |
+
"""Connectivity step restricted to a cluster."""
|
| 297 |
+
cluster_nodes = list(cluster_nodes)
|
| 298 |
+
connected = set()
|
| 299 |
+
remaining = set(cluster_nodes)
|
| 300 |
+
|
| 301 |
+
current = random.choice(cluster_nodes)
|
| 302 |
+
connected.add(current)
|
| 303 |
+
remaining.remove(current)
|
| 304 |
+
|
| 305 |
+
while remaining:
|
| 306 |
+
candidates = [
|
| 307 |
+
n for n in remaining
|
| 308 |
+
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
|
| 309 |
+
]
|
| 310 |
+
candidate = random.choice(candidates) if candidates else random.choice(list(remaining))
|
| 311 |
+
|
| 312 |
+
neighbors = [
|
| 313 |
+
c for c in connected
|
| 314 |
+
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
|
| 315 |
+
]
|
| 316 |
+
n = random.choice(neighbors) if neighbors else random.choice(list(connected))
|
| 317 |
+
|
| 318 |
+
self.graph.add_edge(n, candidate)
|
| 319 |
+
connected.add(candidate)
|
| 320 |
+
remaining.remove(candidate)
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def _add_bottleneck_links(self, cluster_a, cluster_b, m):
|
| 324 |
+
"""
|
| 325 |
+
Add m inter-cluster edges as bottlenecks. Keep m small.
|
| 326 |
+
Prefer edges that do not create intersections, but will force-connect if needed.
|
| 327 |
+
"""
|
| 328 |
+
cluster_a = list(cluster_a)
|
| 329 |
+
cluster_b = list(cluster_b)
|
| 330 |
+
|
| 331 |
+
def cheb(a, b):
|
| 332 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 333 |
+
|
| 334 |
+
# Candidate pairs sorted by distance
|
| 335 |
+
pairs = []
|
| 336 |
+
for u in cluster_a:
|
| 337 |
+
for v in cluster_b:
|
| 338 |
+
pairs.append((cheb(u, v), u, v))
|
| 339 |
+
pairs.sort(key=lambda t: t[0])
|
| 340 |
+
|
| 341 |
+
added = 0
|
| 342 |
+
used = set()
|
| 343 |
+
for _, u, v in pairs:
|
| 344 |
+
if added >= m:
|
| 345 |
+
break
|
| 346 |
+
if (u, v) in used or (v, u) in used:
|
| 347 |
+
continue
|
| 348 |
+
if self.graph.has_edge(u, v):
|
| 349 |
+
continue
|
| 350 |
+
|
| 351 |
+
# Prefer non-intersecting links
|
| 352 |
+
if not self._would_create_intersection(u, v):
|
| 353 |
+
self.graph.add_edge(u, v)
|
| 354 |
+
used.add((u, v))
|
| 355 |
+
added += 1
|
| 356 |
+
|
| 357 |
+
# If we couldn't add enough without intersections, force the closest remaining
|
| 358 |
+
if added < m:
|
| 359 |
+
for _, u, v in pairs:
|
| 360 |
+
if added >= m:
|
| 361 |
+
break
|
| 362 |
+
if self.graph.has_edge(u, v):
|
| 363 |
+
continue
|
| 364 |
+
self.graph.add_edge(u, v)
|
| 365 |
+
added += 1
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
# --------------------
|
| 369 |
+
# Topology-specific extra edges (non-bottleneck modes)
|
| 370 |
+
# --------------------
|
| 371 |
+
def _compute_edge_count(self):
|
| 372 |
+
total_nodes = len(self.graph.nodes())
|
| 373 |
+
if self.variant == "F":
|
| 374 |
+
return int(1.5 * total_nodes)
|
| 375 |
+
return int(random.uniform(1.5, 2.5) * total_nodes)
|
| 376 |
+
|
| 377 |
+
|
| 378 |
+
def _add_edges(self):
|
| 379 |
+
nodes = list(self.graph.nodes())
|
| 380 |
+
total_edges = self._compute_edge_count()
|
| 381 |
+
|
| 382 |
+
if self.topology == "highly_connected":
|
| 383 |
+
self._add_cluster_dense(nodes, total_edges)
|
| 384 |
+
|
| 385 |
+
elif self.topology == "linear":
|
| 386 |
+
self._make_linear(nodes)
|
| 387 |
+
|
| 388 |
+
# Note: bottlenecks are built in _build_bottleneck_clusters(), not here.
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
# --------------------
|
| 392 |
+
# Dense / sparse edge routines (existing)
|
| 393 |
+
# --------------------
|
| 394 |
+
def _add_cluster_dense(self, nodes, max_edges):
|
| 395 |
+
edges_added = 0
|
| 396 |
+
nodes = list(nodes)
|
| 397 |
+
random.shuffle(nodes)
|
| 398 |
+
|
| 399 |
+
for i in range(len(nodes)):
|
| 400 |
+
for j in range(i + 1, len(nodes)):
|
| 401 |
+
if edges_added >= max_edges:
|
| 402 |
+
return
|
| 403 |
+
n1, n2 = nodes[i], nodes[j]
|
| 404 |
+
|
| 405 |
+
# Straight edge
|
| 406 |
+
if (n1[0] == n2[0] or n1[1] == n2[1]):
|
| 407 |
+
if not self._straight_edge_intersects(n1, n2):
|
| 408 |
+
self.graph.add_edge(n1, n2)
|
| 409 |
+
edges_added += 1
|
| 410 |
+
continue
|
| 411 |
+
|
| 412 |
+
# Diagonal edge
|
| 413 |
+
if abs(n1[0] - n2[0]) == abs(n1[1] - n2[1]):
|
| 414 |
+
if not self._diagonal_intersects(n1, n2):
|
| 415 |
+
self.graph.add_edge(n1, n2)
|
| 416 |
+
edges_added += 1
|
| 417 |
+
|
| 418 |
+
|
| 419 |
+
def _make_linear(self, nodes):
|
| 420 |
+
nodes_sorted = sorted(nodes, key=lambda x: (x[0], x[1]))
|
| 421 |
+
if not nodes_sorted:
|
| 422 |
+
return
|
| 423 |
+
|
| 424 |
+
prev = nodes_sorted[0]
|
| 425 |
+
for nxt in nodes_sorted[1:]:
|
| 426 |
+
x1, y1 = prev
|
| 427 |
+
x2, y2 = nxt
|
| 428 |
+
|
| 429 |
+
if x1 == x2 or y1 == y2:
|
| 430 |
+
self.graph.add_edge(prev, nxt)
|
| 431 |
+
prev = nxt
|
| 432 |
+
else:
|
| 433 |
+
if x1 != x2:
|
| 434 |
+
step = (x1 + (1 if x2 > x1 else -1), y1)
|
| 435 |
+
if step in nodes:
|
| 436 |
+
self.graph.add_edge(prev, step)
|
| 437 |
+
self.graph.add_edge(step, nxt)
|
| 438 |
+
prev = nxt
|
| 439 |
+
continue
|
| 440 |
+
|
| 441 |
+
if y1 != y2:
|
| 442 |
+
step = (x1, y1 + (1 if y2 > y1 else -1))
|
| 443 |
+
if step in nodes:
|
| 444 |
+
self.graph.add_edge(prev, step)
|
| 445 |
+
self.graph.add_edge(step, nxt)
|
| 446 |
+
prev = nxt
|
| 447 |
+
continue
|
| 448 |
+
|
| 449 |
+
for node in nodes_sorted:
|
| 450 |
+
if random.random() < 0.15:
|
| 451 |
+
x, y = node
|
| 452 |
+
candidates = [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]
|
| 453 |
+
random.shuffle(candidates)
|
| 454 |
+
|
| 455 |
+
for c in candidates:
|
| 456 |
+
if c in nodes and not self.graph.has_edge(node, c):
|
| 457 |
+
if self.graph.degree(node) < 3 and self.graph.degree(c) < 3:
|
| 458 |
+
self.graph.add_edge(node, c)
|
| 459 |
+
break
|
| 460 |
+
|
| 461 |
+
|
| 462 |
+
# --------------------
|
| 463 |
+
# Intersection checks (existing + used by reconnect)
|
| 464 |
+
# --------------------
|
| 465 |
+
def _straight_edge_intersects(self, n1, n2):
|
| 466 |
+
x1, y1 = n1
|
| 467 |
+
x2, y2 = n2
|
| 468 |
+
|
| 469 |
+
if not (x1 == x2 or y1 == y2):
|
| 470 |
+
return True
|
| 471 |
+
|
| 472 |
+
if (x1, y1) > (x2, y2):
|
| 473 |
+
n1, n2 = n2, n1
|
| 474 |
+
x1, y1 = n1
|
| 475 |
+
x2, y2 = n2
|
| 476 |
+
|
| 477 |
+
for a, b in self.graph.edges():
|
| 478 |
+
if {a, b} == {n1, n2}:
|
| 479 |
+
continue
|
| 480 |
+
|
| 481 |
+
ax, ay = a
|
| 482 |
+
bx, by = b
|
| 483 |
+
|
| 484 |
+
if y1 == y2: # horizontal
|
| 485 |
+
if ay == by == y1:
|
| 486 |
+
if max(ax, bx) >= min(x1, x2) and min(ax, bx) <= max(x1, x2):
|
| 487 |
+
return True
|
| 488 |
+
|
| 489 |
+
if x1 == x2: # vertical
|
| 490 |
+
if ax == bx == x1:
|
| 491 |
+
if max(ay, by) >= min(y1, y2) and min(ay, by) <= max(y1, y2):
|
| 492 |
+
return True
|
| 493 |
+
|
| 494 |
+
return False
|
| 495 |
+
|
| 496 |
+
|
| 497 |
+
def _diagonal_intersects(self, n1, n2):
|
| 498 |
+
x1, y1 = n1
|
| 499 |
+
x2, y2 = n2
|
| 500 |
+
|
| 501 |
+
for a, b in self.graph.edges():
|
| 502 |
+
ax, ay = a
|
| 503 |
+
bx, by = b
|
| 504 |
+
|
| 505 |
+
if abs(ax - bx) == abs(ay - by):
|
| 506 |
+
if not (max(x1, x2) < min(ax, bx) or min(x1, x2) > max(ax, bx)):
|
| 507 |
+
if not (max(y1, y2) < min(ay, by) or min(y1, y2) > max(ay, by)):
|
| 508 |
+
return True
|
| 509 |
+
|
| 510 |
+
return False
|
| 511 |
+
|
| 512 |
+
|
| 513 |
+
def _orientation(self, p, q, r):
|
| 514 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 515 |
+
val = (qy - py) * (rx - qx) - (qx - px) * (ry - qy)
|
| 516 |
+
if val == 0:
|
| 517 |
+
return 0
|
| 518 |
+
return 1 if val > 0 else 2
|
| 519 |
+
|
| 520 |
+
|
| 521 |
+
def _on_segment(self, p, q, r):
|
| 522 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 523 |
+
return (min(px, rx) <= qx <= max(px, rx) and
|
| 524 |
+
min(py, ry) <= qy <= max(py, ry))
|
| 525 |
+
|
| 526 |
+
|
| 527 |
+
def _segments_intersect(self, a, b, c, d):
|
| 528 |
+
if a in (c, d) or b in (c, d):
|
| 529 |
+
return False
|
| 530 |
+
|
| 531 |
+
o1 = self._orientation(a, b, c)
|
| 532 |
+
o2 = self._orientation(a, b, d)
|
| 533 |
+
o3 = self._orientation(c, d, a)
|
| 534 |
+
o4 = self._orientation(c, d, b)
|
| 535 |
+
|
| 536 |
+
if o1 != o2 and o3 != o4:
|
| 537 |
+
return True
|
| 538 |
+
|
| 539 |
+
if o1 == 0 and self._on_segment(a, c, b):
|
| 540 |
+
return True
|
| 541 |
+
if o2 == 0 and self._on_segment(a, d, b):
|
| 542 |
+
return True
|
| 543 |
+
if o3 == 0 and self._on_segment(c, a, d):
|
| 544 |
+
return True
|
| 545 |
+
if o4 == 0 and self._on_segment(c, b, d):
|
| 546 |
+
return True
|
| 547 |
+
|
| 548 |
+
return False
|
| 549 |
+
|
| 550 |
+
|
| 551 |
+
def _would_create_intersection(self, u, v):
|
| 552 |
+
for x, y in self.graph.edges():
|
| 553 |
+
if u in (x, y) or v in (x, y):
|
| 554 |
+
continue
|
| 555 |
+
if self._segments_intersect(u, v, x, y):
|
| 556 |
+
return True
|
| 557 |
+
return False
|
| 558 |
+
|
| 559 |
+
|
| 560 |
+
def _remove_intersections(self):
|
| 561 |
+
max_passes = 10
|
| 562 |
+
pass_no = 0
|
| 563 |
+
total_removed = 0
|
| 564 |
+
|
| 565 |
+
while pass_no < max_passes:
|
| 566 |
+
pass_no += 1
|
| 567 |
+
edges = list(self.graph.edges())
|
| 568 |
+
intersections = []
|
| 569 |
+
|
| 570 |
+
for i in range(len(edges)):
|
| 571 |
+
a, b = edges[i]
|
| 572 |
+
for j in range(i + 1, len(edges)):
|
| 573 |
+
c, d = edges[j]
|
| 574 |
+
if self._segments_intersect(a, b, c, d):
|
| 575 |
+
intersections.append((a, b, c, d))
|
| 576 |
+
|
| 577 |
+
if not intersections:
|
| 578 |
+
break
|
| 579 |
+
|
| 580 |
+
removed_this_pass = 0
|
| 581 |
+
for a, b, c, d in intersections:
|
| 582 |
+
if not self.graph.has_edge(a, b) or not self.graph.has_edge(c, d):
|
| 583 |
+
continue
|
| 584 |
+
|
| 585 |
+
len1 = (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
|
| 586 |
+
len2 = (c[0] - d[0]) ** 2 + (c[1] - d[1]) ** 2
|
| 587 |
+
|
| 588 |
+
if len1 >= len2:
|
| 589 |
+
try:
|
| 590 |
+
self.graph.remove_edge(a, b)
|
| 591 |
+
removed_this_pass += 1
|
| 592 |
+
except Exception:
|
| 593 |
+
pass
|
| 594 |
+
else:
|
| 595 |
+
try:
|
| 596 |
+
self.graph.remove_edge(c, d)
|
| 597 |
+
removed_this_pass += 1
|
| 598 |
+
except Exception:
|
| 599 |
+
pass
|
| 600 |
+
|
| 601 |
+
total_removed += removed_this_pass
|
| 602 |
+
self._attempt_reconnect_components(prefer_max_distance=2)
|
| 603 |
+
|
| 604 |
+
if not nx.is_connected(self.graph):
|
| 605 |
+
self._attempt_reconnect_components(prefer_max_distance=self.grid_size)
|
| 606 |
+
|
| 607 |
+
final_edges = list(self.graph.edges())
|
| 608 |
+
for i in range(len(final_edges)):
|
| 609 |
+
a, b = final_edges[i]
|
| 610 |
+
for j in range(i + 1, len(final_edges)):
|
| 611 |
+
c, d = final_edges[j]
|
| 612 |
+
if self._segments_intersect(a, b, c, d):
|
| 613 |
+
len1 = (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
|
| 614 |
+
len2 = (c[0] - d[0]) ** 2 + (c[1] - d[1]) ** 2
|
| 615 |
+
if len1 >= len2 and self.graph.has_edge(a, b):
|
| 616 |
+
self.graph.remove_edge(a, b)
|
| 617 |
+
total_removed += 1
|
| 618 |
+
elif self.graph.has_edge(c, d):
|
| 619 |
+
self.graph.remove_edge(c, d)
|
| 620 |
+
total_removed += 1
|
| 621 |
+
|
| 622 |
+
print(f"[cleanup] Removed {total_removed} intersecting edges after {pass_no} passes.")
|
| 623 |
+
|
| 624 |
+
|
| 625 |
+
def _attempt_reconnect_components(self, prefer_max_distance=2):
|
| 626 |
+
comps = list(nx.connected_components(self.graph))
|
| 627 |
+
if len(comps) <= 1:
|
| 628 |
+
return
|
| 629 |
+
|
| 630 |
+
def cheb(a, b):
|
| 631 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 632 |
+
|
| 633 |
+
comp_nodes = [list(c) for c in comps]
|
| 634 |
+
max_relax = self.grid_size
|
| 635 |
+
relax = prefer_max_distance
|
| 636 |
+
|
| 637 |
+
while relax <= max_relax and len(comp_nodes) > 1:
|
| 638 |
+
made_connection = False
|
| 639 |
+
|
| 640 |
+
i = 0
|
| 641 |
+
while i < len(comp_nodes) - 1:
|
| 642 |
+
j = i + 1
|
| 643 |
+
connected_this_round = False
|
| 644 |
+
while j < len(comp_nodes):
|
| 645 |
+
best_pair = None
|
| 646 |
+
best_dist = None
|
| 647 |
+
|
| 648 |
+
for u in comp_nodes[i]:
|
| 649 |
+
for v in comp_nodes[j]:
|
| 650 |
+
if u == v:
|
| 651 |
+
continue
|
| 652 |
+
d = cheb(u, v)
|
| 653 |
+
if d <= relax and (best_dist is None or d < best_dist):
|
| 654 |
+
best_pair = (u, v)
|
| 655 |
+
best_dist = d
|
| 656 |
+
|
| 657 |
+
if best_pair is not None:
|
| 658 |
+
u, v = best_pair
|
| 659 |
+
if not self.graph.has_edge(u, v):
|
| 660 |
+
if not self._would_create_intersection(u, v):
|
| 661 |
+
self.graph.add_edge(u, v)
|
| 662 |
+
else:
|
| 663 |
+
# force if no clean option
|
| 664 |
+
self.graph.add_edge(u, v)
|
| 665 |
+
|
| 666 |
+
made_connection = True
|
| 667 |
+
connected_this_round = True
|
| 668 |
+
comp_nodes[i].extend(comp_nodes[j])
|
| 669 |
+
comp_nodes.pop(j)
|
| 670 |
+
break
|
| 671 |
+
else:
|
| 672 |
+
j += 1
|
| 673 |
+
|
| 674 |
+
if not connected_this_round:
|
| 675 |
+
i += 1
|
| 676 |
+
|
| 677 |
+
if not made_connection:
|
| 678 |
+
relax += 1
|
| 679 |
+
else:
|
| 680 |
+
comps = list(nx.connected_components(self.graph))
|
| 681 |
+
comp_nodes = [list(c) for c in comps]
|
graphGen5.py
ADDED
|
@@ -0,0 +1,776 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import networkx as nx
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import random
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class NetworkGenerator:
|
| 9 |
+
def __init__(self, size="S", variant="F", topology="highly_connected",
|
| 10 |
+
node_drop_fraction=0.1,
|
| 11 |
+
bottleneck_cluster_count=None,
|
| 12 |
+
bottleneck_edges_per_link=1):
|
| 13 |
+
"""
|
| 14 |
+
node_drop_fraction:
|
| 15 |
+
Fraction of all (grid+1)^2 possible positions that are deactivated (not allowed as nodes).
|
| 16 |
+
Example: 0.2 -> remove 1/5 of all grid positions.
|
| 17 |
+
|
| 18 |
+
bottleneck_cluster_count:
|
| 19 |
+
If None, chosen automatically based on size.
|
| 20 |
+
Larger => more small dense clusters.
|
| 21 |
+
|
| 22 |
+
bottleneck_edges_per_link:
|
| 23 |
+
Number of edges connecting consecutive clusters (these are the bottlenecks).
|
| 24 |
+
Keep this small (1 or 2) to preserve bottleneck behavior.
|
| 25 |
+
"""
|
| 26 |
+
self.size = size.upper()
|
| 27 |
+
self.variant = variant.upper()
|
| 28 |
+
self.topology = topology.lower()
|
| 29 |
+
|
| 30 |
+
if self.topology not in ["highly_connected", "bottlenecks", "linear"]:
|
| 31 |
+
raise ValueError("topology must be: 'highly_connected', 'bottlenecks', or 'linear'")
|
| 32 |
+
|
| 33 |
+
self.size_config = {
|
| 34 |
+
"S": {"grid": 4, "node_factor": 0.4, "diag_weights": [1, 4]},
|
| 35 |
+
"M": {"grid": 8, "node_factor": 0.4, "diag_weights": [1, 4]},
|
| 36 |
+
"L": {"grid": 16, "node_factor": 0.4, "diag_weights": [1, 8]},
|
| 37 |
+
}
|
| 38 |
+
|
| 39 |
+
if self.size not in self.size_config:
|
| 40 |
+
raise ValueError("Invalid size. Choose 'S', 'M', or 'L'.")
|
| 41 |
+
if self.variant not in ["F", "R"]:
|
| 42 |
+
raise ValueError("Invalid variant. Choose 'F' (fixed) or 'R' (random).")
|
| 43 |
+
|
| 44 |
+
self.grid_size = self.size_config[self.size]["grid"]
|
| 45 |
+
self.node_factor = self.size_config[self.size]["node_factor"]
|
| 46 |
+
self.weight_dist = self.size_config[self.size]["diag_weights"]
|
| 47 |
+
|
| 48 |
+
self.node_drop_fraction = float(node_drop_fraction)
|
| 49 |
+
if not (0.0 <= self.node_drop_fraction < 1.0):
|
| 50 |
+
raise ValueError("node_drop_fraction must be in [0.0, 1.0).")
|
| 51 |
+
|
| 52 |
+
if bottleneck_cluster_count is None:
|
| 53 |
+
self.bottleneck_cluster_count = {"S": 3, "M": 5, "L": 8}[self.size]
|
| 54 |
+
else:
|
| 55 |
+
self.bottleneck_cluster_count = int(bottleneck_cluster_count)
|
| 56 |
+
if self.bottleneck_cluster_count < 2:
|
| 57 |
+
raise ValueError("bottleneck_cluster_count must be >= 2.")
|
| 58 |
+
|
| 59 |
+
self.bottleneck_edges_per_link = int(bottleneck_edges_per_link)
|
| 60 |
+
if self.bottleneck_edges_per_link < 1:
|
| 61 |
+
raise ValueError("bottleneck_edges_per_link must be >= 1.")
|
| 62 |
+
|
| 63 |
+
self.graph = None
|
| 64 |
+
self.nodes_list = None
|
| 65 |
+
self.active_positions = None # allowed grid positions
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# --------------------
|
| 69 |
+
# Public API
|
| 70 |
+
# --------------------
|
| 71 |
+
def generate(self):
|
| 72 |
+
"""Generate a connected network representing rooms in a building."""
|
| 73 |
+
max_attempts = 8
|
| 74 |
+
|
| 75 |
+
for _ in range(max_attempts):
|
| 76 |
+
self._build_node_mask()
|
| 77 |
+
self._initialize_graph()
|
| 78 |
+
self._add_nodes()
|
| 79 |
+
|
| 80 |
+
nodes = list(self.graph.nodes())
|
| 81 |
+
if len(nodes) < 2:
|
| 82 |
+
continue
|
| 83 |
+
|
| 84 |
+
# Topology-specific edge construction
|
| 85 |
+
if self.topology == "bottlenecks":
|
| 86 |
+
# Replace the usual step-1 connectivity with a cluster+bottleneck design.
|
| 87 |
+
self._build_bottleneck_clusters(nodes)
|
| 88 |
+
else:
|
| 89 |
+
# --- STEP 1: CONNECTIVITY (NEARBY ROOMS ONLY) ---
|
| 90 |
+
self._connect_all_nodes_by_nearby_growth(nodes)
|
| 91 |
+
|
| 92 |
+
# --- STEP 2: ADD TOPOLOGY-SPECIFIC EXTRA EDGES ---
|
| 93 |
+
self._add_edges()
|
| 94 |
+
|
| 95 |
+
# --- STEP 3: REMOVE INTERSECTIONS & RECONNECT ---
|
| 96 |
+
self._remove_intersections()
|
| 97 |
+
self._enforce_edge_budget()
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
# --- STEP 4: FINAL CONNECTIVITY CHECK ---
|
| 101 |
+
if nx.is_connected(self.graph):
|
| 102 |
+
return self.graph
|
| 103 |
+
|
| 104 |
+
raise RuntimeError("Failed to generate a connected network after several attempts")
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def plot(self):
|
| 108 |
+
plt.figure(figsize=(8, 8))
|
| 109 |
+
pos = {node: (node[1], -node[0]) for node in self.graph.nodes()}
|
| 110 |
+
nx.draw(self.graph, pos, with_labels=True, node_size=300, font_size=8)
|
| 111 |
+
plt.title(f"Generated Network ({self.size}, {self.variant}, {self.topology})")
|
| 112 |
+
plt.grid(True)
|
| 113 |
+
plt.show()
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
# --------------------
|
| 117 |
+
# Modification 1: deactivate 1/5 of all possible nodes
|
| 118 |
+
# --------------------
|
| 119 |
+
def _build_node_mask(self):
|
| 120 |
+
"""Deactivate node_drop_fraction of all (grid+1)^2 positions."""
|
| 121 |
+
all_positions = [
|
| 122 |
+
(x, y)
|
| 123 |
+
for x in range(self.grid_size + 1)
|
| 124 |
+
for y in range(self.grid_size + 1)
|
| 125 |
+
]
|
| 126 |
+
drop_frac = self._effective_node_drop_fraction()
|
| 127 |
+
drop = int(drop_frac * len(all_positions))
|
| 128 |
+
|
| 129 |
+
deactivated = set(random.sample(all_positions, drop)) if drop > 0 else set()
|
| 130 |
+
self.active_positions = set(all_positions) - deactivated
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
# --------------------
|
| 134 |
+
# Node initialization and placement
|
| 135 |
+
# --------------------
|
| 136 |
+
def _initialize_graph(self):
|
| 137 |
+
self.graph = nx.Graph()
|
| 138 |
+
|
| 139 |
+
# Prefer to seed from the middle region, but only from active positions.
|
| 140 |
+
margin = max(1, self.grid_size // 4)
|
| 141 |
+
low, high = margin, self.grid_size - margin
|
| 142 |
+
|
| 143 |
+
middle_active = [(x, y) for (x, y) in self.active_positions if low <= x <= high and low <= y <= high]
|
| 144 |
+
if middle_active:
|
| 145 |
+
seed = random.choice(middle_active)
|
| 146 |
+
else:
|
| 147 |
+
seed = random.choice(list(self.active_positions))
|
| 148 |
+
|
| 149 |
+
coords = np.array([seed[0], seed[1]])
|
| 150 |
+
flags = np.zeros(4, dtype=int)
|
| 151 |
+
self.nodes_list = [[coords, flags]]
|
| 152 |
+
self.graph.add_node(tuple(coords))
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def _compute_nodes(self):
|
| 156 |
+
total_possible = (self.grid_size + 1) ** 2
|
| 157 |
+
|
| 158 |
+
if self.variant == "F":
|
| 159 |
+
base = self.node_factor
|
| 160 |
+
else:
|
| 161 |
+
base = random.uniform(0.4, 0.7)
|
| 162 |
+
|
| 163 |
+
# Topology-specific scaling
|
| 164 |
+
if self.topology == "highly_connected":
|
| 165 |
+
scale = 1.2
|
| 166 |
+
elif self.topology == "bottlenecks":
|
| 167 |
+
scale = 0.85
|
| 168 |
+
elif self.topology == "linear":
|
| 169 |
+
scale = 0.75
|
| 170 |
+
else:
|
| 171 |
+
scale = 1.0
|
| 172 |
+
|
| 173 |
+
return int(base * scale * total_possible)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
def _add_nodes(self):
|
| 178 |
+
"""Place nodes mostly in the middle region (cluster logic), respecting active_positions."""
|
| 179 |
+
total_nodes = self._compute_nodes()
|
| 180 |
+
|
| 181 |
+
margin = max(1, self.grid_size // 4)
|
| 182 |
+
low, high = margin, self.grid_size - margin
|
| 183 |
+
|
| 184 |
+
attempts = 0
|
| 185 |
+
while len(self.graph.nodes()) < total_nodes and attempts < 8000:
|
| 186 |
+
attempts += 1
|
| 187 |
+
x = random.randint(low, high)
|
| 188 |
+
y = random.randint(low, high)
|
| 189 |
+
|
| 190 |
+
if (x, y) not in self.active_positions:
|
| 191 |
+
continue
|
| 192 |
+
if (x, y) not in self.graph:
|
| 193 |
+
self.graph.add_node((x, y))
|
| 194 |
+
|
| 195 |
+
def _compute_edge_budget(self):
|
| 196 |
+
"""
|
| 197 |
+
Hard cap on number of edges to make topology differences explicit.
|
| 198 |
+
"""
|
| 199 |
+
n = len(self.graph.nodes())
|
| 200 |
+
|
| 201 |
+
if self.topology == "highly_connected":
|
| 202 |
+
# Dense graph
|
| 203 |
+
if self.variant == "F":
|
| 204 |
+
return int(2.8 * n)
|
| 205 |
+
return int(random.uniform(2.5, 3.2) * n)
|
| 206 |
+
|
| 207 |
+
if self.topology == "bottlenecks":
|
| 208 |
+
# Sparse, cluster-based
|
| 209 |
+
if self.variant == "F":
|
| 210 |
+
return int(1.1 * n)
|
| 211 |
+
return int(random.uniform(0.9, 1.3) * n)
|
| 212 |
+
|
| 213 |
+
if self.topology == "linear":
|
| 214 |
+
# Near-tree
|
| 215 |
+
return max(n - 1, int(0.9 * n))
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def _enforce_edge_budget(self):
|
| 219 |
+
"""
|
| 220 |
+
Remove excess edges while preserving connectivity and avoiding intersections.
|
| 221 |
+
Prefer removing long edges first.
|
| 222 |
+
"""
|
| 223 |
+
budget = self._compute_edge_budget()
|
| 224 |
+
edges = list(self.graph.edges())
|
| 225 |
+
|
| 226 |
+
if len(edges) <= budget:
|
| 227 |
+
return
|
| 228 |
+
|
| 229 |
+
# Sort edges by length (longest first)
|
| 230 |
+
def edge_len(e):
|
| 231 |
+
(x1, y1), (x2, y2) = e
|
| 232 |
+
return (x1 - x2) ** 2 + (y1 - y2) ** 2
|
| 233 |
+
|
| 234 |
+
edges_sorted = sorted(edges, key=edge_len, reverse=True)
|
| 235 |
+
|
| 236 |
+
for u, v in edges_sorted:
|
| 237 |
+
if len(self.graph.edges()) <= budget:
|
| 238 |
+
break
|
| 239 |
+
|
| 240 |
+
# Do not disconnect the graph
|
| 241 |
+
self.graph.remove_edge(u, v)
|
| 242 |
+
if not nx.is_connected(self.graph):
|
| 243 |
+
self.graph.add_edge(u, v)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
# --------------------
|
| 248 |
+
# Connectivity for non-bottleneck modes
|
| 249 |
+
# --------------------
|
| 250 |
+
def _connect_all_nodes_by_nearby_growth(self, nodes):
|
| 251 |
+
"""Original connectivity step (nearby growth), unchanged except refactoring."""
|
| 252 |
+
connected = set()
|
| 253 |
+
remaining = set(nodes)
|
| 254 |
+
|
| 255 |
+
current = random.choice(nodes)
|
| 256 |
+
connected.add(current)
|
| 257 |
+
remaining.remove(current)
|
| 258 |
+
|
| 259 |
+
while remaining:
|
| 260 |
+
candidates = [
|
| 261 |
+
n for n in remaining
|
| 262 |
+
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
|
| 263 |
+
]
|
| 264 |
+
|
| 265 |
+
candidate = random.choice(candidates) if candidates else random.choice(list(remaining))
|
| 266 |
+
|
| 267 |
+
neighbors = [
|
| 268 |
+
c for c in connected
|
| 269 |
+
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
|
| 270 |
+
]
|
| 271 |
+
n = random.choice(neighbors) if neighbors else random.choice(list(connected))
|
| 272 |
+
|
| 273 |
+
# Keep your existing intersection checks (but connectivity is forced anyway)
|
| 274 |
+
if n[0] == candidate[0] or n[1] == candidate[1]:
|
| 275 |
+
_ = self._straight_edge_intersects(n, candidate)
|
| 276 |
+
elif abs(n[0] - candidate[0]) == abs(n[1] - candidate[1]):
|
| 277 |
+
_ = self._diagonal_intersects(n, candidate)
|
| 278 |
+
|
| 279 |
+
self.graph.add_edge(n, candidate)
|
| 280 |
+
|
| 281 |
+
connected.add(candidate)
|
| 282 |
+
remaining.remove(candidate)
|
| 283 |
+
|
| 284 |
+
|
| 285 |
+
# --------------------
|
| 286 |
+
# Modification 2: Bottleneck = multiple small dense clusters connected by bottleneck edges
|
| 287 |
+
# --------------------
|
| 288 |
+
def _build_bottleneck_clusters(self, nodes):
|
| 289 |
+
"""
|
| 290 |
+
Build a number of small, internally dense "grids" (clusters),
|
| 291 |
+
then connect clusters with a small number of inter-cluster edges
|
| 292 |
+
which become the bottlenecks.
|
| 293 |
+
"""
|
| 294 |
+
# Clear any edges that might exist (seed node has no edges, but be explicit)
|
| 295 |
+
self.graph.remove_edges_from(list(self.graph.edges()))
|
| 296 |
+
|
| 297 |
+
clusters, centers = self._spatial_cluster_nodes(nodes, k=self.bottleneck_cluster_count)
|
| 298 |
+
|
| 299 |
+
# Make each cluster internally dense.
|
| 300 |
+
# We do "dense-without-intersections-when-possible" using your dense edge routine on subsets.
|
| 301 |
+
for cluster in clusters:
|
| 302 |
+
if len(cluster) < 2:
|
| 303 |
+
continue
|
| 304 |
+
|
| 305 |
+
# Ensure cluster is connected first using nearby growth inside the cluster
|
| 306 |
+
self._connect_cluster_by_nearby_growth(cluster)
|
| 307 |
+
|
| 308 |
+
# Then densify within the cluster
|
| 309 |
+
max_edges = max(1, int(3.0 * len(cluster))) # dense-ish without becoming fully complete
|
| 310 |
+
self._add_cluster_dense(list(cluster), max_edges=max_edges)
|
| 311 |
+
|
| 312 |
+
# Connect clusters in a chain (or near-chain) by centers.
|
| 313 |
+
order = sorted(range(len(clusters)), key=lambda i: (centers[i][0], centers[i][1]))
|
| 314 |
+
for a_idx, b_idx in zip(order[:-1], order[1:]):
|
| 315 |
+
self._add_bottleneck_links(clusters[a_idx], clusters[b_idx], self.bottleneck_edges_per_link)
|
| 316 |
+
|
| 317 |
+
# If something ended up disconnected (e.g., tiny clusters), reconnect lightly
|
| 318 |
+
if not nx.is_connected(self.graph):
|
| 319 |
+
self._attempt_reconnect_components(prefer_max_distance=2)
|
| 320 |
+
|
| 321 |
+
|
| 322 |
+
def _spatial_cluster_nodes(self, nodes, k):
|
| 323 |
+
"""
|
| 324 |
+
Simple spatial clustering:
|
| 325 |
+
- pick k random centers
|
| 326 |
+
- assign each node to closest center by Chebyshev distance
|
| 327 |
+
- return clusters + centers
|
| 328 |
+
"""
|
| 329 |
+
def cheb(a, b):
|
| 330 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 331 |
+
|
| 332 |
+
nodes = list(nodes)
|
| 333 |
+
if k >= len(nodes):
|
| 334 |
+
# each node its own cluster (degenerate)
|
| 335 |
+
return [[n] for n in nodes], nodes[:]
|
| 336 |
+
|
| 337 |
+
centers = random.sample(nodes, k)
|
| 338 |
+
clusters = [[] for _ in range(k)]
|
| 339 |
+
|
| 340 |
+
for n in nodes:
|
| 341 |
+
best_i = min(range(k), key=lambda i: cheb(n, centers[i]))
|
| 342 |
+
clusters[best_i].append(n)
|
| 343 |
+
|
| 344 |
+
# Recompute centers as medoid-ish: pick node closest to mean
|
| 345 |
+
new_centers = []
|
| 346 |
+
for c in clusters:
|
| 347 |
+
if not c:
|
| 348 |
+
new_centers.append(random.choice(nodes))
|
| 349 |
+
continue
|
| 350 |
+
mx = sum(p[0] for p in c) / len(c)
|
| 351 |
+
my = sum(p[1] for p in c) / len(c)
|
| 352 |
+
new_centers.append(min(c, key=lambda p: (p[0] - mx) ** 2 + (p[1] - my) ** 2))
|
| 353 |
+
|
| 354 |
+
# Remove empty clusters by merging them into nearest non-empty cluster
|
| 355 |
+
non_empty = [(c, ctr) for c, ctr in zip(clusters, new_centers) if len(c) > 0]
|
| 356 |
+
clusters = [c for c, _ in non_empty]
|
| 357 |
+
centers = [ctr for _, ctr in non_empty]
|
| 358 |
+
|
| 359 |
+
return clusters, centers
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
def _connect_cluster_by_nearby_growth(self, cluster_nodes):
|
| 363 |
+
"""Connectivity step restricted to a cluster."""
|
| 364 |
+
cluster_nodes = list(cluster_nodes)
|
| 365 |
+
connected = set()
|
| 366 |
+
remaining = set(cluster_nodes)
|
| 367 |
+
|
| 368 |
+
current = random.choice(cluster_nodes)
|
| 369 |
+
connected.add(current)
|
| 370 |
+
remaining.remove(current)
|
| 371 |
+
|
| 372 |
+
while remaining:
|
| 373 |
+
candidates = [
|
| 374 |
+
n for n in remaining
|
| 375 |
+
if any(abs(n[0] - c[0]) <= 2 and abs(n[1] - c[1]) <= 2 for c in connected)
|
| 376 |
+
]
|
| 377 |
+
candidate = random.choice(candidates) if candidates else random.choice(list(remaining))
|
| 378 |
+
|
| 379 |
+
neighbors = [
|
| 380 |
+
c for c in connected
|
| 381 |
+
if abs(c[0] - candidate[0]) <= 2 and abs(c[1] - candidate[1]) <= 2
|
| 382 |
+
]
|
| 383 |
+
n = random.choice(neighbors) if neighbors else random.choice(list(connected))
|
| 384 |
+
|
| 385 |
+
self.graph.add_edge(n, candidate)
|
| 386 |
+
connected.add(candidate)
|
| 387 |
+
remaining.remove(candidate)
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
def _add_bottleneck_links(self, cluster_a, cluster_b, m):
|
| 391 |
+
"""
|
| 392 |
+
Add m inter-cluster edges as bottlenecks. Keep m small.
|
| 393 |
+
Prefer edges that do not create intersections, but will force-connect if needed.
|
| 394 |
+
"""
|
| 395 |
+
cluster_a = list(cluster_a)
|
| 396 |
+
cluster_b = list(cluster_b)
|
| 397 |
+
|
| 398 |
+
def cheb(a, b):
|
| 399 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 400 |
+
|
| 401 |
+
# Candidate pairs sorted by distance
|
| 402 |
+
pairs = []
|
| 403 |
+
for u in cluster_a:
|
| 404 |
+
for v in cluster_b:
|
| 405 |
+
pairs.append((cheb(u, v), u, v))
|
| 406 |
+
pairs.sort(key=lambda t: t[0])
|
| 407 |
+
|
| 408 |
+
added = 0
|
| 409 |
+
used = set()
|
| 410 |
+
for _, u, v in pairs:
|
| 411 |
+
if added >= m:
|
| 412 |
+
break
|
| 413 |
+
if (u, v) in used or (v, u) in used:
|
| 414 |
+
continue
|
| 415 |
+
if self.graph.has_edge(u, v):
|
| 416 |
+
continue
|
| 417 |
+
|
| 418 |
+
# Prefer non-intersecting links
|
| 419 |
+
if not self._would_create_intersection(u, v):
|
| 420 |
+
self.graph.add_edge(u, v)
|
| 421 |
+
used.add((u, v))
|
| 422 |
+
added += 1
|
| 423 |
+
|
| 424 |
+
# If we couldn't add enough without intersections, force the closest remaining
|
| 425 |
+
if added < m:
|
| 426 |
+
for _, u, v in pairs:
|
| 427 |
+
if added >= m:
|
| 428 |
+
break
|
| 429 |
+
if self.graph.has_edge(u, v):
|
| 430 |
+
continue
|
| 431 |
+
self.graph.add_edge(u, v)
|
| 432 |
+
added += 1
|
| 433 |
+
|
| 434 |
+
|
| 435 |
+
# --------------------
|
| 436 |
+
# Topology-specific extra edges (non-bottleneck modes)
|
| 437 |
+
# --------------------
|
| 438 |
+
|
| 439 |
+
def _effective_node_drop_fraction(self):
|
| 440 |
+
"""
|
| 441 |
+
Topology-aware node dropout.
|
| 442 |
+
"""
|
| 443 |
+
base = self.node_drop_fraction
|
| 444 |
+
|
| 445 |
+
if self.topology == "highly_connected":
|
| 446 |
+
return max(0.0, base * 0.5) # fewer dropped nodes
|
| 447 |
+
|
| 448 |
+
if self.topology == "bottlenecks":
|
| 449 |
+
return min(0.9, base * 1.5) # more dropped nodes
|
| 450 |
+
|
| 451 |
+
if self.topology == "linear":
|
| 452 |
+
return min(0.95, base * 2.0) # very sparse
|
| 453 |
+
|
| 454 |
+
return base
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
def _compute_edge_count(self):
|
| 458 |
+
"""Compute the number of edges for the graph based on the topology mode."""
|
| 459 |
+
total_nodes = len(self.graph.nodes())
|
| 460 |
+
|
| 461 |
+
if self.topology == "highly_connected":
|
| 462 |
+
# Increase edge count for fully connected mode (e.g., by multiplying by a factor)
|
| 463 |
+
return int(4.0 * total_nodes) # Example: higher factor for full connection
|
| 464 |
+
elif self.topology == "bottlenecks":
|
| 465 |
+
# Use the default edge count calculation for bottleneck mode
|
| 466 |
+
return int(2.0 * total_nodes)
|
| 467 |
+
else:
|
| 468 |
+
# Default edge count for other topologies
|
| 469 |
+
return int(random.uniform(1.5, 2.5) * total_nodes)
|
| 470 |
+
|
| 471 |
+
|
| 472 |
+
|
| 473 |
+
def _add_edges(self):
|
| 474 |
+
nodes = list(self.graph.nodes())
|
| 475 |
+
total_edges = self._compute_edge_count()
|
| 476 |
+
|
| 477 |
+
if self.topology == "highly_connected":
|
| 478 |
+
self._add_cluster_dense(nodes, total_edges)
|
| 479 |
+
|
| 480 |
+
elif self.topology == "linear":
|
| 481 |
+
self._make_linear(nodes)
|
| 482 |
+
|
| 483 |
+
# Note: bottlenecks are built in _build_bottleneck_clusters(), not here.
|
| 484 |
+
|
| 485 |
+
|
| 486 |
+
# --------------------
|
| 487 |
+
# Dense / sparse edge routines (existing)
|
| 488 |
+
# --------------------
|
| 489 |
+
def _add_cluster_dense(self, nodes, max_edges):
|
| 490 |
+
edges_added = 0
|
| 491 |
+
nodes = list(nodes)
|
| 492 |
+
random.shuffle(nodes)
|
| 493 |
+
|
| 494 |
+
for i in range(len(nodes)):
|
| 495 |
+
for j in range(i + 1, len(nodes)):
|
| 496 |
+
if edges_added >= max_edges:
|
| 497 |
+
return
|
| 498 |
+
n1, n2 = nodes[i], nodes[j]
|
| 499 |
+
|
| 500 |
+
# Straight edge
|
| 501 |
+
if (n1[0] == n2[0] or n1[1] == n2[1]):
|
| 502 |
+
if not self._straight_edge_intersects(n1, n2):
|
| 503 |
+
self.graph.add_edge(n1, n2)
|
| 504 |
+
edges_added += 1
|
| 505 |
+
continue
|
| 506 |
+
|
| 507 |
+
# Diagonal edge
|
| 508 |
+
if abs(n1[0] - n2[0]) == abs(n1[1] - n2[1]):
|
| 509 |
+
if not self._diagonal_intersects(n1, n2):
|
| 510 |
+
self.graph.add_edge(n1, n2)
|
| 511 |
+
edges_added += 1
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
def _make_linear(self, nodes):
|
| 515 |
+
nodes_sorted = sorted(nodes, key=lambda x: (x[0], x[1]))
|
| 516 |
+
if not nodes_sorted:
|
| 517 |
+
return
|
| 518 |
+
|
| 519 |
+
prev = nodes_sorted[0]
|
| 520 |
+
for nxt in nodes_sorted[1:]:
|
| 521 |
+
x1, y1 = prev
|
| 522 |
+
x2, y2 = nxt
|
| 523 |
+
|
| 524 |
+
if x1 == x2 or y1 == y2:
|
| 525 |
+
self.graph.add_edge(prev, nxt)
|
| 526 |
+
prev = nxt
|
| 527 |
+
else:
|
| 528 |
+
if x1 != x2:
|
| 529 |
+
step = (x1 + (1 if x2 > x1 else -1), y1)
|
| 530 |
+
if step in nodes:
|
| 531 |
+
self.graph.add_edge(prev, step)
|
| 532 |
+
self.graph.add_edge(step, nxt)
|
| 533 |
+
prev = nxt
|
| 534 |
+
continue
|
| 535 |
+
|
| 536 |
+
if y1 != y2:
|
| 537 |
+
step = (x1, y1 + (1 if y2 > y1 else -1))
|
| 538 |
+
if step in nodes:
|
| 539 |
+
self.graph.add_edge(prev, step)
|
| 540 |
+
self.graph.add_edge(step, nxt)
|
| 541 |
+
prev = nxt
|
| 542 |
+
continue
|
| 543 |
+
|
| 544 |
+
for node in nodes_sorted:
|
| 545 |
+
if random.random() < 0.15:
|
| 546 |
+
x, y = node
|
| 547 |
+
candidates = [(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)]
|
| 548 |
+
random.shuffle(candidates)
|
| 549 |
+
|
| 550 |
+
for c in candidates:
|
| 551 |
+
if c in nodes and not self.graph.has_edge(node, c):
|
| 552 |
+
if self.graph.degree(node) < 3 and self.graph.degree(c) < 3:
|
| 553 |
+
self.graph.add_edge(node, c)
|
| 554 |
+
break
|
| 555 |
+
|
| 556 |
+
|
| 557 |
+
# --------------------
|
| 558 |
+
# Intersection checks (existing + used by reconnect)
|
| 559 |
+
# --------------------
|
| 560 |
+
def _straight_edge_intersects(self, n1, n2):
|
| 561 |
+
x1, y1 = n1
|
| 562 |
+
x2, y2 = n2
|
| 563 |
+
|
| 564 |
+
if not (x1 == x2 or y1 == y2):
|
| 565 |
+
return True
|
| 566 |
+
|
| 567 |
+
if (x1, y1) > (x2, y2):
|
| 568 |
+
n1, n2 = n2, n1
|
| 569 |
+
x1, y1 = n1
|
| 570 |
+
x2, y2 = n2
|
| 571 |
+
|
| 572 |
+
for a, b in self.graph.edges():
|
| 573 |
+
if {a, b} == {n1, n2}:
|
| 574 |
+
continue
|
| 575 |
+
|
| 576 |
+
ax, ay = a
|
| 577 |
+
bx, by = b
|
| 578 |
+
|
| 579 |
+
if y1 == y2: # horizontal
|
| 580 |
+
if ay == by == y1:
|
| 581 |
+
if max(ax, bx) >= min(x1, x2) and min(ax, bx) <= max(x1, x2):
|
| 582 |
+
return True
|
| 583 |
+
|
| 584 |
+
if x1 == x2: # vertical
|
| 585 |
+
if ax == bx == x1:
|
| 586 |
+
if max(ay, by) >= min(y1, y2) and min(ay, by) <= max(y1, y2):
|
| 587 |
+
return True
|
| 588 |
+
|
| 589 |
+
return False
|
| 590 |
+
|
| 591 |
+
|
| 592 |
+
def _diagonal_intersects(self, n1, n2):
|
| 593 |
+
x1, y1 = n1
|
| 594 |
+
x2, y2 = n2
|
| 595 |
+
|
| 596 |
+
for a, b in self.graph.edges():
|
| 597 |
+
ax, ay = a
|
| 598 |
+
bx, by = b
|
| 599 |
+
|
| 600 |
+
if abs(ax - bx) == abs(ay - by):
|
| 601 |
+
if not (max(x1, x2) < min(ax, bx) or min(x1, x2) > max(ax, bx)):
|
| 602 |
+
if not (max(y1, y2) < min(ay, by) or min(y1, y2) > max(ay, by)):
|
| 603 |
+
return True
|
| 604 |
+
|
| 605 |
+
return False
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
def _orientation(self, p, q, r):
|
| 609 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 610 |
+
val = (qy - py) * (rx - qx) - (qx - px) * (ry - qy)
|
| 611 |
+
if val == 0:
|
| 612 |
+
return 0
|
| 613 |
+
return 1 if val > 0 else 2
|
| 614 |
+
|
| 615 |
+
|
| 616 |
+
def _on_segment(self, p, q, r):
|
| 617 |
+
(px, py), (qx, qy), (rx, ry) = p, q, r
|
| 618 |
+
return (min(px, rx) <= qx <= max(px, rx) and
|
| 619 |
+
min(py, ry) <= qy <= max(py, ry))
|
| 620 |
+
|
| 621 |
+
|
| 622 |
+
def _segments_intersect(self, a, b, c, d):
|
| 623 |
+
if a in (c, d) or b in (c, d):
|
| 624 |
+
return False
|
| 625 |
+
|
| 626 |
+
o1 = self._orientation(a, b, c)
|
| 627 |
+
o2 = self._orientation(a, b, d)
|
| 628 |
+
o3 = self._orientation(c, d, a)
|
| 629 |
+
o4 = self._orientation(c, d, b)
|
| 630 |
+
|
| 631 |
+
if o1 != o2 and o3 != o4:
|
| 632 |
+
return True
|
| 633 |
+
|
| 634 |
+
if o1 == 0 and self._on_segment(a, c, b):
|
| 635 |
+
return True
|
| 636 |
+
if o2 == 0 and self._on_segment(a, d, b):
|
| 637 |
+
return True
|
| 638 |
+
if o3 == 0 and self._on_segment(c, a, d):
|
| 639 |
+
return True
|
| 640 |
+
if o4 == 0 and self._on_segment(c, b, d):
|
| 641 |
+
return True
|
| 642 |
+
|
| 643 |
+
return False
|
| 644 |
+
|
| 645 |
+
|
| 646 |
+
def _would_create_intersection(self, u, v):
|
| 647 |
+
for x, y in self.graph.edges():
|
| 648 |
+
if u in (x, y) or v in (x, y):
|
| 649 |
+
continue
|
| 650 |
+
if self._segments_intersect(u, v, x, y):
|
| 651 |
+
return True
|
| 652 |
+
return False
|
| 653 |
+
|
| 654 |
+
|
| 655 |
+
def _remove_intersections(self):
|
| 656 |
+
max_passes = 10
|
| 657 |
+
pass_no = 0
|
| 658 |
+
total_removed = 0
|
| 659 |
+
|
| 660 |
+
while pass_no < max_passes:
|
| 661 |
+
pass_no += 1
|
| 662 |
+
edges = list(self.graph.edges())
|
| 663 |
+
intersections = []
|
| 664 |
+
|
| 665 |
+
for i in range(len(edges)):
|
| 666 |
+
a, b = edges[i]
|
| 667 |
+
for j in range(i + 1, len(edges)):
|
| 668 |
+
c, d = edges[j]
|
| 669 |
+
if self._segments_intersect(a, b, c, d):
|
| 670 |
+
intersections.append((a, b, c, d))
|
| 671 |
+
|
| 672 |
+
if not intersections:
|
| 673 |
+
break
|
| 674 |
+
|
| 675 |
+
removed_this_pass = 0
|
| 676 |
+
for a, b, c, d in intersections:
|
| 677 |
+
if not self.graph.has_edge(a, b) or not self.graph.has_edge(c, d):
|
| 678 |
+
continue
|
| 679 |
+
|
| 680 |
+
len1 = (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
|
| 681 |
+
len2 = (c[0] - d[0]) ** 2 + (c[1] - d[1]) ** 2
|
| 682 |
+
|
| 683 |
+
if len1 >= len2:
|
| 684 |
+
try:
|
| 685 |
+
self.graph.remove_edge(a, b)
|
| 686 |
+
removed_this_pass += 1
|
| 687 |
+
except Exception:
|
| 688 |
+
pass
|
| 689 |
+
else:
|
| 690 |
+
try:
|
| 691 |
+
self.graph.remove_edge(c, d)
|
| 692 |
+
removed_this_pass += 1
|
| 693 |
+
except Exception:
|
| 694 |
+
pass
|
| 695 |
+
|
| 696 |
+
total_removed += removed_this_pass
|
| 697 |
+
self._attempt_reconnect_components(prefer_max_distance=2)
|
| 698 |
+
|
| 699 |
+
if not nx.is_connected(self.graph):
|
| 700 |
+
self._attempt_reconnect_components(prefer_max_distance=self.grid_size)
|
| 701 |
+
|
| 702 |
+
final_edges = list(self.graph.edges())
|
| 703 |
+
for i in range(len(final_edges)):
|
| 704 |
+
a, b = final_edges[i]
|
| 705 |
+
for j in range(i + 1, len(final_edges)):
|
| 706 |
+
c, d = final_edges[j]
|
| 707 |
+
if self._segments_intersect(a, b, c, d):
|
| 708 |
+
len1 = (a[0] - b[0]) ** 2 + (a[1] - b[1]) ** 2
|
| 709 |
+
len2 = (c[0] - d[0]) ** 2 + (c[1] - d[1]) ** 2
|
| 710 |
+
if len1 >= len2 and self.graph.has_edge(a, b):
|
| 711 |
+
self.graph.remove_edge(a, b)
|
| 712 |
+
total_removed += 1
|
| 713 |
+
elif self.graph.has_edge(c, d):
|
| 714 |
+
self.graph.remove_edge(c, d)
|
| 715 |
+
total_removed += 1
|
| 716 |
+
|
| 717 |
+
print(f"[cleanup] Removed {total_removed} intersecting edges after {pass_no} passes.")
|
| 718 |
+
|
| 719 |
+
|
| 720 |
+
def _attempt_reconnect_components(self, prefer_max_distance=2):
|
| 721 |
+
comps = list(nx.connected_components(self.graph))
|
| 722 |
+
if len(comps) <= 1:
|
| 723 |
+
return
|
| 724 |
+
|
| 725 |
+
def cheb(a, b):
|
| 726 |
+
return max(abs(a[0] - b[0]), abs(a[1] - b[1]))
|
| 727 |
+
|
| 728 |
+
comp_nodes = [list(c) for c in comps]
|
| 729 |
+
max_relax = self.grid_size
|
| 730 |
+
relax = prefer_max_distance
|
| 731 |
+
|
| 732 |
+
while relax <= max_relax and len(comp_nodes) > 1:
|
| 733 |
+
made_connection = False
|
| 734 |
+
i = 0
|
| 735 |
+
|
| 736 |
+
while i < len(comp_nodes) - 1:
|
| 737 |
+
j = i + 1
|
| 738 |
+
connected_this_round = False
|
| 739 |
+
|
| 740 |
+
while j < len(comp_nodes):
|
| 741 |
+
best_pair = None
|
| 742 |
+
best_dist = None
|
| 743 |
+
|
| 744 |
+
for u in comp_nodes[i]:
|
| 745 |
+
for v in comp_nodes[j]:
|
| 746 |
+
if u == v:
|
| 747 |
+
continue
|
| 748 |
+
d = cheb(u, v)
|
| 749 |
+
if d <= relax and (best_dist is None or d < best_dist):
|
| 750 |
+
best_pair = (u, v)
|
| 751 |
+
best_dist = d
|
| 752 |
+
|
| 753 |
+
if best_pair is not None:
|
| 754 |
+
u, v = best_pair
|
| 755 |
+
if not self.graph.has_edge(u, v):
|
| 756 |
+
if not self._would_create_intersection(u, v):
|
| 757 |
+
self.graph.add_edge(u, v)
|
| 758 |
+
else:
|
| 759 |
+
self.graph.add_edge(u, v)
|
| 760 |
+
|
| 761 |
+
made_connection = True
|
| 762 |
+
connected_this_round = True
|
| 763 |
+
comp_nodes[i].extend(comp_nodes[j])
|
| 764 |
+
comp_nodes.pop(j)
|
| 765 |
+
break
|
| 766 |
+
else:
|
| 767 |
+
j += 1
|
| 768 |
+
|
| 769 |
+
if not connected_this_round:
|
| 770 |
+
i += 1
|
| 771 |
+
|
| 772 |
+
if not made_connection:
|
| 773 |
+
relax += 1
|
| 774 |
+
else:
|
| 775 |
+
comps = list(nx.connected_components(self.graph))
|
| 776 |
+
comp_nodes = [list(c) for c in comps]
|