File size: 11,753 Bytes
a5dac37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import React, { useState, useEffect, useMemo } from 'react';
import { Play, Pause, RotateCcw, Music, Zap, Waves } from 'lucide-react';

interface Note {
  name: string;
  frequency: number;
  phase: number;
  quantumState: string;
}

interface HarmonicSeries {
  fundamental: number;
  harmonics: number[];
  ratios: string[];
}

const QuantumHarmonyExplorer: React.FC = () => {
  const [isPlaying, setIsPlaying] = useState(false);
  const [selectedNote, setSelectedNote] = useState<Note | null>(null);
  const [time, setTime] = useState(0);
  const [showQuantumView, setShowQuantumView] = useState(false);

  // Musical notes and their quantum phase mappings
  const notes: Note[] = useMemo(() => [
    { name: 'C4', frequency: 261.63, phase: 0, quantumState: '|0⟩' },
    { name: 'D4', frequency: 293.66, phase: Math.PI/4, quantumState: '(|0⟩+|1⟩)/√2' },
    { name: 'E4', frequency: 329.63, phase: Math.PI/2, quantumState: '|1⟩' },
    { name: 'F4', frequency: 349.23, phase: 3*Math.PI/4, quantumState: '(|0⟩-|1⟩)/√2' },
    { name: 'G4', frequency: 392.00, phase: Math.PI, quantumState: '|0⟩' },
    { name: 'A4', frequency: 440.00, phase: 5*Math.PI/4, quantumState: '(|0⟩+i|1⟩)/√2' },
    { name: 'B4', frequency: 493.88, phase: 3*Math.PI/2, quantumState: '|1⟩' },
    { name: 'C5', frequency: 523.25, phase: 2*Math.PI, quantumState: '|0⟩' },
  ], []);

  // Calculate harmonic series for fundamental frequency
  const harmonicSeries: HarmonicSeries = useMemo(() => {
    if (!selectedNote) return { fundamental: 0, harmonics: [], ratios: [] };
    
    const fundamental = selectedNote.frequency;
    const harmonics = Array.from({ length: 8 }, (_, i) => fundamental * (i + 1));
    const ratios = harmonics.map((h, i) => `${i + 1}:1`);
    
    return { fundamental, harmonics, ratios };
  }, [selectedNote]);

  // Animation loop
  useEffect(() => {
    let animationFrame: number;
    
    if (isPlaying) {
      const animate = () => {
        setTime(prev => prev + 0.016); // ~60fps
        animationFrame = requestAnimationFrame(animate);
      };
      animationFrame = requestAnimationFrame(animate);
    }
    
    return () => {
      if (animationFrame) cancelAnimationFrame(animationFrame);
    };
  }, [isPlaying]);

  const calculateWaveAmplitude = (frequency: number, t: number, phase: number = 0): number => {
    return Math.sin(2 * Math.PI * frequency * t / 100 + phase) * 0.3;
  };

  const getConsonanceColor = (ratio: number): string => {
    // Color based on harmonic consonance ratios
    if (ratio === 1) return 'rgb(59, 130, 246)'; // Perfect unison - blue
    if (Math.abs(ratio - 2) < 0.1) return 'rgb(16, 185, 129)'; // Octave - green
    if (Math.abs(ratio - 1.5) < 0.1) return 'rgb(245, 158, 11)'; // Perfect fifth - amber
    if (Math.abs(ratio - 4/3) < 0.1) return 'rgb(168, 85, 247)'; // Perfect fourth - purple
    if (Math.abs(ratio - 5/4) < 0.1) return 'rgb(236, 72, 153)'; // Major third - pink
    return 'rgb(156, 163, 175)'; // Other intervals - gray
  };

  const renderWaveform = (note: Note, index: number) => {
    const points = Array.from({ length: 200 }, (_, i) => {
      const x = i * 2;
      const y = 100 + calculateWaveAmplitude(note.frequency, time + i, note.phase) * 80;
      return `${x},${y}`;
    }).join(' ');

    return (
      <svg key={note.name} width="400" height="200" className="border rounded-lg bg-gradient-to-r from-slate-50 to-blue-50">
        <defs>
          <linearGradient id={`gradient-${index}`} x1="0%" y1="0%" x2="100%" y2="0%">
            <stop offset="0%" stopColor={getConsonanceColor(1)} stopOpacity="0.3" />
            <stop offset="100%" stopColor={getConsonanceColor(1)} stopOpacity="0.8" />
          </linearGradient>
        </defs>
        
        <polyline
          points={points}
          fill="none"
          stroke={`url(#gradient-${index})`}
          strokeWidth="2"
        />
        
        <text x="10" y="25" className="text-sm font-medium fill-slate-700">
          {note.name} - {note.frequency.toFixed(1)}Hz
        </text>
        
        {showQuantumView && (
          <text x="10" y="45" className="text-xs fill-slate-600">
            φ = {note.phase.toFixed(2)} | {note.quantumState}
          </text>
        )}
      </svg>
    );
  };

  const renderHarmonicSpectrum = () => {
    if (!selectedNote) return null;

    return (
      <div className="bg-white p-6 rounded-xl shadow-lg">
        <h3 className="text-xl font-semibold mb-4 flex items-center gap-2">
          <Waves className="w-5 h-5 text-blue-600" />
          Harmonic Series Analysis
        </h3>
        
        <div className="grid grid-cols-4 gap-4 mb-6">
          {harmonicSeries.harmonics.slice(0, 8).map((freq, i) => (
            <div key={i} className="text-center">
              <div 
                className="w-full h-16 rounded-lg mb-2 border-2 flex items-center justify-center"
                style={{ 
                  backgroundColor: getConsonanceColor((i + 1)),
                  opacity: 0.7 + (0.3 * Math.sin(time * freq / 100))
                }}
              >
                <span className="text-white font-semibold">{i + 1}</span>
              </div>
              <div className="text-xs text-slate-600">
                {freq.toFixed(0)}Hz
              </div>
              <div className="text-xs text-slate-500">
                {harmonicSeries.ratios[i]}
              </div>
            </div>
          ))}
        </div>

        <div className="text-sm text-slate-600">
          <p className="mb-2">
            <strong>Quantum Phase Relationship:</strong> Each harmonic corresponds to a different quantum phase state.
          </p>
          <p>
            <strong>Consonance Theory:</strong> Simple ratios (2:1, 3:2, 4:3) create more consonant harmonies and more stable quantum interference patterns.
          </p>
        </div>
      </div>
    );
  };

  return (
    <div className="min-h-screen bg-gradient-to-br from-blue-50 via-purple-50 to-pink-50 p-6">
      <div className="max-w-7xl mx-auto">
        <div className="text-center mb-8">
          <h1 className="text-4xl font-bold bg-gradient-to-r from-blue-600 to-purple-600 bg-clip-text text-transparent mb-4">
            Quantum-Musical Harmony Explorer
          </h1>
          <p className="text-lg text-slate-600 max-w-3xl mx-auto">
            Explore the fascinating mathematical connections between musical harmony and quantum mechanics. 
            While not a practical quantum computer, this demonstrates real relationships between wave physics, 
            harmonic ratios, and quantum phase states.
          </p>
        </div>

        {/* Controls */}
        <div className="bg-white p-6 rounded-xl shadow-lg mb-8">
          <div className="flex flex-wrap items-center gap-4 mb-6">
            <button
              onClick={() => setIsPlaying(!isPlaying)}
              className="flex items-center gap-2 px-6 py-3 bg-blue-600 hover:bg-blue-700 text-white rounded-lg font-medium transition-colors"
            >
              {isPlaying ? <Pause className="w-5 h-5" /> : <Play className="w-5 h-5" />}
              {isPlaying ? 'Pause' : 'Play'} Animation
            </button>
            
            <button
              onClick={() => setTime(0)}
              className="flex items-center gap-2 px-4 py-2 border border-slate-300 hover:bg-slate-50 rounded-lg transition-colors"
            >
              <RotateCcw className="w-4 h-4" />
              Reset
            </button>
            
            <button
              onClick={() => setShowQuantumView(!showQuantumView)}
              className={`flex items-center gap-2 px-4 py-2 rounded-lg transition-colors ${
                showQuantumView 
                  ? 'bg-purple-100 text-purple-700 border border-purple-300' 
                  : 'border border-slate-300 hover:bg-slate-50'
              }`}
            >
              <Zap className="w-4 h-4" />
              Quantum View
            </button>
          </div>

          {/* Note Selection */}
          <div className="grid grid-cols-4 md:grid-cols-8 gap-2">
            {notes.map((note) => (
              <button
                key={note.name}
                onClick={() => setSelectedNote(note)}
                className={`p-3 rounded-lg border-2 transition-all ${
                  selectedNote?.name === note.name
                    ? 'border-blue-500 bg-blue-50 text-blue-700'
                    : 'border-slate-200 hover:border-slate-300 hover:bg-slate-50'
                }`}
              >
                <div className="font-medium">{note.name}</div>
                <div className="text-xs text-slate-500">{note.frequency.toFixed(0)}Hz</div>
              </button>
            ))}
          </div>
        </div>

        {/* Waveform Display */}
        <div className="bg-white p-6 rounded-xl shadow-lg mb-8">
          <h2 className="text-2xl font-semibold mb-6 flex items-center gap-2">
            <Music className="w-6 h-6 text-blue-600" />
            Wave Interference Patterns
          </h2>
          
          <div className="grid grid-cols-1 lg:grid-cols-2 gap-6">
            {notes.slice(0, 4).map((note, index) => renderWaveform(note, index))}
          </div>
          
          <div className="mt-6 p-4 bg-blue-50 rounded-lg">
            <h3 className="font-semibold text-blue-800 mb-2">Scientific Connection:</h3>
            <p className="text-blue-700 text-sm">
              Musical waves and quantum wave functions both follow wave equations. The phase relationships 
              in harmony (consonance/dissonance) mirror constructive/destructive interference in quantum systems.
              However, actual quantum computers require precise control at the atomic level, not just wave mathematics.
            </p>
          </div>
        </div>

        {/* Harmonic Analysis */}
        {selectedNote && renderHarmonicSpectrum()}

        {/* Educational Information */}
        <div className="bg-white p-6 rounded-xl shadow-lg">
          <h2 className="text-2xl font-semibold mb-4">Real Science vs Speculation</h2>
          
          <div className="grid md:grid-cols-2 gap-6">
            <div className="p-4 bg-green-50 border border-green-200 rounded-lg">
              <h3 className="font-semibold text-green-800 mb-3">✅ Real Connections</h3>
              <ul className="text-green-700 text-sm space-y-2">
                <li>• Wave equations govern both sound and quantum mechanics</li>
                <li>• Phase relationships are fundamental to both domains</li>
                <li>• Harmonic ratios relate to frequency relationships</li>
                <li>• Interference patterns follow similar mathematics</li>
                <li>• Fourier transforms are used in both music and quantum computing</li>
              </ul>
            </div>
            
            <div className="p-4 bg-amber-50 border border-amber-200 rounded-lg">
              <h3 className="font-semibold text-amber-800 mb-3">⚠️ Current Limitations</h3>
              <ul className="text-amber-700 text-sm space-y-2">
                <li>• Quantum computers require atomic-scale precision</li>
                <li>• Decoherence is caused by environmental interactions, not musical dissonance</li>
                <li>• Current systems need extreme cooling for isolation</li>
                <li>• Musical harmony alone cannot create quantum entanglement</li>
                <li>• Scaling quantum systems remains an engineering challenge</li>
              </ul>
            </div>
          </div>
        </div>
      </div>
    </div>
  );
};

export default QuantumHarmonyExplorer;