Spaces:
Sleeping
Sleeping
File size: 11,753 Bytes
a5dac37 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 |
import React, { useState, useEffect, useMemo } from 'react';
import { Play, Pause, RotateCcw, Music, Zap, Waves } from 'lucide-react';
interface Note {
name: string;
frequency: number;
phase: number;
quantumState: string;
}
interface HarmonicSeries {
fundamental: number;
harmonics: number[];
ratios: string[];
}
const QuantumHarmonyExplorer: React.FC = () => {
const [isPlaying, setIsPlaying] = useState(false);
const [selectedNote, setSelectedNote] = useState<Note | null>(null);
const [time, setTime] = useState(0);
const [showQuantumView, setShowQuantumView] = useState(false);
// Musical notes and their quantum phase mappings
const notes: Note[] = useMemo(() => [
{ name: 'C4', frequency: 261.63, phase: 0, quantumState: '|0⟩' },
{ name: 'D4', frequency: 293.66, phase: Math.PI/4, quantumState: '(|0⟩+|1⟩)/√2' },
{ name: 'E4', frequency: 329.63, phase: Math.PI/2, quantumState: '|1⟩' },
{ name: 'F4', frequency: 349.23, phase: 3*Math.PI/4, quantumState: '(|0⟩-|1⟩)/√2' },
{ name: 'G4', frequency: 392.00, phase: Math.PI, quantumState: '|0⟩' },
{ name: 'A4', frequency: 440.00, phase: 5*Math.PI/4, quantumState: '(|0⟩+i|1⟩)/√2' },
{ name: 'B4', frequency: 493.88, phase: 3*Math.PI/2, quantumState: '|1⟩' },
{ name: 'C5', frequency: 523.25, phase: 2*Math.PI, quantumState: '|0⟩' },
], []);
// Calculate harmonic series for fundamental frequency
const harmonicSeries: HarmonicSeries = useMemo(() => {
if (!selectedNote) return { fundamental: 0, harmonics: [], ratios: [] };
const fundamental = selectedNote.frequency;
const harmonics = Array.from({ length: 8 }, (_, i) => fundamental * (i + 1));
const ratios = harmonics.map((h, i) => `${i + 1}:1`);
return { fundamental, harmonics, ratios };
}, [selectedNote]);
// Animation loop
useEffect(() => {
let animationFrame: number;
if (isPlaying) {
const animate = () => {
setTime(prev => prev + 0.016); // ~60fps
animationFrame = requestAnimationFrame(animate);
};
animationFrame = requestAnimationFrame(animate);
}
return () => {
if (animationFrame) cancelAnimationFrame(animationFrame);
};
}, [isPlaying]);
const calculateWaveAmplitude = (frequency: number, t: number, phase: number = 0): number => {
return Math.sin(2 * Math.PI * frequency * t / 100 + phase) * 0.3;
};
const getConsonanceColor = (ratio: number): string => {
// Color based on harmonic consonance ratios
if (ratio === 1) return 'rgb(59, 130, 246)'; // Perfect unison - blue
if (Math.abs(ratio - 2) < 0.1) return 'rgb(16, 185, 129)'; // Octave - green
if (Math.abs(ratio - 1.5) < 0.1) return 'rgb(245, 158, 11)'; // Perfect fifth - amber
if (Math.abs(ratio - 4/3) < 0.1) return 'rgb(168, 85, 247)'; // Perfect fourth - purple
if (Math.abs(ratio - 5/4) < 0.1) return 'rgb(236, 72, 153)'; // Major third - pink
return 'rgb(156, 163, 175)'; // Other intervals - gray
};
const renderWaveform = (note: Note, index: number) => {
const points = Array.from({ length: 200 }, (_, i) => {
const x = i * 2;
const y = 100 + calculateWaveAmplitude(note.frequency, time + i, note.phase) * 80;
return `${x},${y}`;
}).join(' ');
return (
<svg key={note.name} width="400" height="200" className="border rounded-lg bg-gradient-to-r from-slate-50 to-blue-50">
<defs>
<linearGradient id={`gradient-${index}`} x1="0%" y1="0%" x2="100%" y2="0%">
<stop offset="0%" stopColor={getConsonanceColor(1)} stopOpacity="0.3" />
<stop offset="100%" stopColor={getConsonanceColor(1)} stopOpacity="0.8" />
</linearGradient>
</defs>
<polyline
points={points}
fill="none"
stroke={`url(#gradient-${index})`}
strokeWidth="2"
/>
<text x="10" y="25" className="text-sm font-medium fill-slate-700">
{note.name} - {note.frequency.toFixed(1)}Hz
</text>
{showQuantumView && (
<text x="10" y="45" className="text-xs fill-slate-600">
φ = {note.phase.toFixed(2)} | {note.quantumState}
</text>
)}
</svg>
);
};
const renderHarmonicSpectrum = () => {
if (!selectedNote) return null;
return (
<div className="bg-white p-6 rounded-xl shadow-lg">
<h3 className="text-xl font-semibold mb-4 flex items-center gap-2">
<Waves className="w-5 h-5 text-blue-600" />
Harmonic Series Analysis
</h3>
<div className="grid grid-cols-4 gap-4 mb-6">
{harmonicSeries.harmonics.slice(0, 8).map((freq, i) => (
<div key={i} className="text-center">
<div
className="w-full h-16 rounded-lg mb-2 border-2 flex items-center justify-center"
style={{
backgroundColor: getConsonanceColor((i + 1)),
opacity: 0.7 + (0.3 * Math.sin(time * freq / 100))
}}
>
<span className="text-white font-semibold">{i + 1}</span>
</div>
<div className="text-xs text-slate-600">
{freq.toFixed(0)}Hz
</div>
<div className="text-xs text-slate-500">
{harmonicSeries.ratios[i]}
</div>
</div>
))}
</div>
<div className="text-sm text-slate-600">
<p className="mb-2">
<strong>Quantum Phase Relationship:</strong> Each harmonic corresponds to a different quantum phase state.
</p>
<p>
<strong>Consonance Theory:</strong> Simple ratios (2:1, 3:2, 4:3) create more consonant harmonies and more stable quantum interference patterns.
</p>
</div>
</div>
);
};
return (
<div className="min-h-screen bg-gradient-to-br from-blue-50 via-purple-50 to-pink-50 p-6">
<div className="max-w-7xl mx-auto">
<div className="text-center mb-8">
<h1 className="text-4xl font-bold bg-gradient-to-r from-blue-600 to-purple-600 bg-clip-text text-transparent mb-4">
Quantum-Musical Harmony Explorer
</h1>
<p className="text-lg text-slate-600 max-w-3xl mx-auto">
Explore the fascinating mathematical connections between musical harmony and quantum mechanics.
While not a practical quantum computer, this demonstrates real relationships between wave physics,
harmonic ratios, and quantum phase states.
</p>
</div>
{/* Controls */}
<div className="bg-white p-6 rounded-xl shadow-lg mb-8">
<div className="flex flex-wrap items-center gap-4 mb-6">
<button
onClick={() => setIsPlaying(!isPlaying)}
className="flex items-center gap-2 px-6 py-3 bg-blue-600 hover:bg-blue-700 text-white rounded-lg font-medium transition-colors"
>
{isPlaying ? <Pause className="w-5 h-5" /> : <Play className="w-5 h-5" />}
{isPlaying ? 'Pause' : 'Play'} Animation
</button>
<button
onClick={() => setTime(0)}
className="flex items-center gap-2 px-4 py-2 border border-slate-300 hover:bg-slate-50 rounded-lg transition-colors"
>
<RotateCcw className="w-4 h-4" />
Reset
</button>
<button
onClick={() => setShowQuantumView(!showQuantumView)}
className={`flex items-center gap-2 px-4 py-2 rounded-lg transition-colors ${
showQuantumView
? 'bg-purple-100 text-purple-700 border border-purple-300'
: 'border border-slate-300 hover:bg-slate-50'
}`}
>
<Zap className="w-4 h-4" />
Quantum View
</button>
</div>
{/* Note Selection */}
<div className="grid grid-cols-4 md:grid-cols-8 gap-2">
{notes.map((note) => (
<button
key={note.name}
onClick={() => setSelectedNote(note)}
className={`p-3 rounded-lg border-2 transition-all ${
selectedNote?.name === note.name
? 'border-blue-500 bg-blue-50 text-blue-700'
: 'border-slate-200 hover:border-slate-300 hover:bg-slate-50'
}`}
>
<div className="font-medium">{note.name}</div>
<div className="text-xs text-slate-500">{note.frequency.toFixed(0)}Hz</div>
</button>
))}
</div>
</div>
{/* Waveform Display */}
<div className="bg-white p-6 rounded-xl shadow-lg mb-8">
<h2 className="text-2xl font-semibold mb-6 flex items-center gap-2">
<Music className="w-6 h-6 text-blue-600" />
Wave Interference Patterns
</h2>
<div className="grid grid-cols-1 lg:grid-cols-2 gap-6">
{notes.slice(0, 4).map((note, index) => renderWaveform(note, index))}
</div>
<div className="mt-6 p-4 bg-blue-50 rounded-lg">
<h3 className="font-semibold text-blue-800 mb-2">Scientific Connection:</h3>
<p className="text-blue-700 text-sm">
Musical waves and quantum wave functions both follow wave equations. The phase relationships
in harmony (consonance/dissonance) mirror constructive/destructive interference in quantum systems.
However, actual quantum computers require precise control at the atomic level, not just wave mathematics.
</p>
</div>
</div>
{/* Harmonic Analysis */}
{selectedNote && renderHarmonicSpectrum()}
{/* Educational Information */}
<div className="bg-white p-6 rounded-xl shadow-lg">
<h2 className="text-2xl font-semibold mb-4">Real Science vs Speculation</h2>
<div className="grid md:grid-cols-2 gap-6">
<div className="p-4 bg-green-50 border border-green-200 rounded-lg">
<h3 className="font-semibold text-green-800 mb-3">✅ Real Connections</h3>
<ul className="text-green-700 text-sm space-y-2">
<li>• Wave equations govern both sound and quantum mechanics</li>
<li>• Phase relationships are fundamental to both domains</li>
<li>• Harmonic ratios relate to frequency relationships</li>
<li>• Interference patterns follow similar mathematics</li>
<li>• Fourier transforms are used in both music and quantum computing</li>
</ul>
</div>
<div className="p-4 bg-amber-50 border border-amber-200 rounded-lg">
<h3 className="font-semibold text-amber-800 mb-3">⚠️ Current Limitations</h3>
<ul className="text-amber-700 text-sm space-y-2">
<li>• Quantum computers require atomic-scale precision</li>
<li>• Decoherence is caused by environmental interactions, not musical dissonance</li>
<li>• Current systems need extreme cooling for isolation</li>
<li>• Musical harmony alone cannot create quantum entanglement</li>
<li>• Scaling quantum systems remains an engineering challenge</li>
</ul>
</div>
</div>
</div>
</div>
</div>
);
};
export default QuantumHarmonyExplorer; |