File size: 13,057 Bytes
30b060a 9d3a830 bbd8ccb 6a748ed 8b5cec5 efbfdc1 aaf8367 efbfdc1 85ea4ec 52adc97 aaf8367 85ea4ec bbd8ccb 52adc97 85ea4ec bbd8ccb 52adc97 bbd8ccb 52adc97 bbd8ccb 85ea4ec 52adc97 85ea4ec 52adc97 85ea4ec 52adc97 85ea4ec 52adc97 85ea4ec 52adc97 aaf8367 bbd8ccb 85ea4ec 415b778 aaf8367 bbd8ccb 415b778 85ea4ec bbd8ccb aaf8367 2565f04 bbd8ccb aaf8367 2565f04 bbd8ccb 415b778 bbd8ccb 415b778 bbd8ccb 415b778 819a580 415b778 bbd8ccb efbfdc1 8b5cec5 8c6ac41 efbfdc1 415b778 8c6ac41 415b778 8b5cec5 8c6ac41 8b5cec5 415b778 8c6ac41 415b778 6a748ed 8b5cec5 efbfdc1 8b5cec5 efbfdc1 2565f04 6296ee3 2565f04 9d3a830 efbfdc1 bbd8ccb 6296ee3 bbd8ccb 6296ee3 8b5cec5 6296ee3 bbd8ccb 6296ee3 bbd8ccb aaf8367 2565f04 efbfdc1 2565f04 bbd8ccb efbfdc1 415b778 2565f04 efbfdc1 2565f04 9d3a830 2565f04 415b778 2565f04 bbd8ccb 2565f04 415b778 bbd8ccb 2565f04 bbd8ccb 819a580 2565f04 8b5cec5 819a580 2565f04 819a580 bbd8ccb 2565f04 6296ee3 819a580 2565f04 819a580 2565f04 bbd8ccb 9d3a830 6296ee3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 |
import os
import gradio as gr
from huggingface_hub import InferenceClient
from datasets import load_dataset
import random
import re
import sympy as sp # Added SymPy for symbolic computation and better rendering/verification
# Global datasets - load lazily
math_samples = None
def load_sample_problems():
"""Load sample problems from ALL datasets - FIXED VERSION"""
global math_samples
if math_samples is not None:
return math_samples
samples = []
try:
print("🔄 Loading GSM8K...")
# GSM8K (math problems)
gsm8k = load_dataset("openai/gsm8k", "main", streaming=True)
gsm_count = 0
for i, item in enumerate(gsm8k["train"]):
samples.append(item["question"])
gsm_count += 1
if gsm_count >= 50:
break
print("🔄 Loading Fineweb-edu...")
# Fineweb-edu (educational text - extract math-like questions)
fw = load_dataset("HuggingFaceFW/fineweb-edu", name="sample-10BT", split="train", streaming=True)
fw_count = 0
for item in fw:
# Filter for math-related content
text_lower = item['text'].lower()
if any(word in text_lower for word in ['math', 'calculate', 'solve', 'derivative', 'integral', 'triangle', 'equation', 'area', 'volume', 'probability']):
# Truncate and format as question
question = item['text'][:150].strip()
if len(question) > 20: # Ensure it's substantial
samples.append(question + " (Solve this math problem.)")
fw_count += 1
if fw_count >= 20:
break
print("🔄 Loading Ultrachat...")
# Ultrachat_200k (chat-like math queries)
ds = load_dataset("HuggingFaceH4/ultrachat_200k", streaming=True)
ds_count = 0
for item in ds:
if len(item['messages']) > 0:
content = item['messages'][0]['content'].lower()
if any(word in content for word in ['math', 'calculate', 'solve', 'problem', 'equation', 'derivative', 'integral']):
user_msg = item['messages'][0]['content']
if len(user_msg) > 10: # Valid length
samples.append(user_msg)
ds_count += 1
if ds_count >= 20:
break
print(f"✅ Loaded {len(samples)} samples: GSM8K ({gsm_count}), Fineweb-edu ({fw_count}), Ultrachat ({ds_count})")
math_samples = samples
return samples
except Exception as e:
print(f"⚠️ Dataset error: {e}, using fallback")
math_samples = [
"What is the derivative of f(x) = 3x² + 2x - 1?",
"A triangle has sides of length 5, 12, and 13. What is its area?",
"If log₂(x) + log₂(x+6) = 4, find the value of x.",
"Find the limit: lim(x->0) (sin(x)/x)",
"Solve the system: x + 2y = 7, 3x - y = 4",
"Calculate the integral of sin(x) from 0 to pi.",
"What is the probability of rolling a 6 on a die 3 times in a row?"
]
return math_samples
def create_math_system_message():
"""Specialized system prompt for mathematics with LaTeX"""
return r"""You are Mathetics AI, an advanced mathematics tutor and problem solver.
🧮 **Your Expertise:**
- Step-by-step problem solving with clear explanations
- Multiple solution approaches when applicable
- Proper mathematical notation and terminology using LaTeX
- Verification of answers through different methods
📐 **Problem Domains:**
- Arithmetic, Algebra, and Number Theory
- Geometry, Trigonometry, and Coordinate Geometry
- Calculus (Limits, Derivatives, Integrals)
- Statistics, Probability, and Data Analysis
- Competition Mathematics (AMC, AIME level)
💡 **Teaching Style:**
1. **Understand the Problem** - Identify what's being asked
2. **Plan the Solution** - Choose the appropriate method
3. **Execute Step-by-Step** - Show all work clearly with LaTeX formatting
4. **Verify the Answer** - Check if the result makes sense
5. **Alternative Methods** - Mention other possible approaches
**LaTeX Guidelines:**
- Use $...$ for inline math: $x^2 + y^2 = z^2$
- Use $$...$$ for display math
- Box final answers: \boxed{answer}
- Fractions: \frac{numerator}{denominator}
- Limits: \lim_{x \to 0}
- Derivatives: \frac{d}{dx} or f'(x)
Always be precise, educational, and encourage mathematical thinking."""
def render_latex(text):
"""Enhanced LaTeX cleanup with support for advanced SymPy outputs"""
if not text:
return text
try:
# Convert LaTeX bracket notation to dollar signs
text = re.sub(r'\\\[(.*?)\\\]', r'$$\1$$', text, flags=re.DOTALL)
text = re.sub(r'\\\((.*?)\\\)', r'$\1$', text, flags=re.DOTALL)
# Fix boxed answers if not in math mode
if '\\boxed' in text and not re.search(r'\$.*\\boxed.*\$', text):
text = re.sub(r'\\boxed\{([^}]+)\}', r'$$\boxed{\1}$$', text)
# Handle equation environments for display in Gradio (convert to $$...$$)
text = re.sub(r'\\begin\{equation\*\}(.*?)\\end\{equation\*\}', r'$$\1$$', text, flags=re.DOTALL)
# Clean up any escaped % or special chars for Markdown compatibility
text = re.sub(r'\\%', '%', text)
except Exception as e:
print(f"⚠️ LaTeX error: {e}")
return text
def try_sympy_compute(message):
"""Attempt to compute the result using SymPy for verification and better rendering, with advanced LaTeX options."""
message_lower = message.lower()
x = sp.Symbol('x')
# Handle definite integrals
if 'integral' in message_lower or '∫' in message:
match = re.search(r'(?:integral of|∫) (.+?) from (.+?) to (.+)', message_lower)
if match:
expr_str, lower, upper = match.groups()
try:
expr = sp.sympify(expr_str.replace('^', '**')) # Handle ^ for power
result = sp.integrate(expr, (x, sp.sympify(lower), sp.sympify(upper)))
# Advanced LaTeX: fold fractions, plain mode, manual box
return r'\boxed{' + sp.latex(result, mode='plain', fold_frac_powers=True) + r'}'
except Exception as e:
print(f"⚠️ SymPy integral error: {e}")
return None
# Handle derivatives with inv_trig_style
elif 'derivative' in message_lower:
match = re.search(r'derivative of (.+)', message_lower)
if match:
expr_str = match.group(1)
try:
expr = sp.sympify(expr_str.replace('^', '**'))
result = sp.diff(expr, x)
# Advanced LaTeX: power style for inv trig, fold short frac
return r'\boxed{' + sp.latex(result, inv_trig_style='power', fold_short_frac=True) + r'}'
except Exception as e:
print(f"⚠️ SymPy derivative error: {e}")
return None
# Handle limits
elif 'limit' in message_lower or 'lim' in message_lower:
match = re.search(r'(?:limit|lim) (.+?) as (.+?) to (.+)', message_lower)
if match:
expr_str, var, to_val = match.groups()
try:
expr = sp.sympify(expr_str.replace('^', '**'))
result = sp.limit(expr, sp.Symbol(var), sp.sympify(to_val))
# Advanced LaTeX: equation* mode for display
return sp.latex(result, mode='equation*')
except Exception as e:
print(f"⚠️ SymPy limit error: {e}")
return None
# Handle triangle area (Heron's formula)
elif 'area of triangle' in message_lower:
match = re.search(r'(\d+)[ -](\d+)[ -](\d+)', message_lower) # Matches 5-12-13 or 5 12 13
if match:
a, b, c = map(float, match.groups())
try:
s = (a + b + c) / 2
area = sp.sqrt(s * (s - a) * (s - b) * (s - c))
# Advanced LaTeX: inline mode with folding
return r'\boxed{' + sp.latex(area, mode='inline', fold_frac_powers=True) + r'}'
except Exception as e:
print(f"⚠️ SymPy area error: {e}")
return None
# Handle simple matrices (e.g., "matrix [[1,2],[3,4]]")
elif 'matrix' in message_lower:
match = re.search(r'matrix \[\[(.+?)\]\]', message_lower) # Basic parsing; extend as needed
if match:
try:
elements = [list(map(sp.sympify, row.split(','))) for row in match.group(1).split('],[')]
m = sp.Matrix(elements)
# Advanced LaTeX: custom delimiters and matrix style
return sp.latex(m, mat_delim='[', mat_str='bmatrix')
except Exception as e:
print(f"⚠️ SymPy matrix error: {e}")
return None
return None
def respond(message, history, system_message, max_tokens, temperature, top_p):
"""Non-streaming response for stability, with SymPy verification for supported queries."""
client = InferenceClient(model="Qwen/Qwen2.5-Math-7B-Instruct")
messages = [{"role": "system", "content": system_message}]
# Iterate over history dicts and add user/assistant pairs
for msg in history:
if msg["role"] == "user":
messages.append({"role": "user", "content": msg["content"]})
elif msg["role"] == "assistant":
messages.append({"role": "assistant", "content": msg["content"]})
messages.append({"role": "user", "content": message})
try:
completion = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
response = completion.choices[0].message.content
# Add SymPy verification if applicable (now with advanced LaTeX)
sympy_result = try_sympy_compute(message)
if sympy_result:
response += "\n\n**Verified with SymPy (for exact symbolic computation):** $$" + sympy_result + "$$"
return render_latex(response)
except Exception as e:
return f"❌ Error: {str(e)[:100]}... Try a simpler problem."
def get_random_sample():
"""Get a random sample problem - loads datasets if needed"""
global math_samples
if math_samples is None:
math_samples = load_sample_problems()
return random.choice(math_samples)
def insert_sample_to_chat(difficulty):
"""Insert random sample into chat input"""
return get_random_sample()
def show_help():
return """**🧮 Math Help Tips:**
1. Be Specific: "Find the derivative of x² + 3x" instead of "help with calculus"
2. Request Steps: "Show me step-by-step how to solve..."
3. Ask for Verification: "Check if my answer x=5 is correct"
4. Alternative Methods: "What's another way to solve this integral?"
5. Use Clear Notation: "lim(x->0)" for limits
Pro Tip: Crank tokens to 1500+ for competition problems!"""
# Simple Chatbot interface
with gr.Blocks(title="🧮 Mathetics AI") as demo:
gr.Markdown("# 🧮 **Mathetics AI** - Math Tutor\nPowered by Qwen 2.5-Math")
chatbot = gr.Chatbot(height=500, label="Conversation", type='messages')
help_text = gr.Markdown(visible=False)
msg = gr.Textbox(placeholder="Ask a math problem...", show_label=False)
with gr.Row():
submit = gr.Button("Solve", variant="primary")
clear = gr.Button("Clear", variant="secondary")
sample = gr.Button("Random Problem", variant="secondary")
help_btn = gr.Button("Help", variant="secondary")
gr.Examples(
examples=[
["derivative of x^2 sin(x)"],
["area of triangle 5-12-13"],
["∫x^2 dx from 0 to 2"],
["limit sin(x)/x as x to 0"],
["matrix [[1,2],[3,4]]"]
],
inputs=msg
)
def chat_response(message, history):
"""Updated to use dict-based history for type='messages'."""
bot_response = respond(message, history, create_math_system_message(), 1024, 0.3, 0.85)
# Append as dicts, not tuples
history.append({"role": "user", "content": message})
history.append({"role": "assistant", "content": bot_response})
return history, ""
def clear_chat():
"""Clear the chat history and textbox."""
return [], ""
msg.submit(chat_response, [msg, chatbot], [chatbot, msg])
submit.click(chat_response, [msg, chatbot], [chatbot, msg])
clear.click(clear_chat, outputs=[chatbot, msg])
sample.click(insert_sample_to_chat, outputs=msg)
help_btn.click(lambda: (show_help(), gr.update(visible=True)), outputs=[help_text, help_text]).then(
lambda: gr.update(visible=False), outputs=help_text
)
demo.launch() |