Update src/streamlit_app.py
Browse files- src/streamlit_app.py +134 -38
src/streamlit_app.py
CHANGED
|
@@ -1,40 +1,136 @@
|
|
| 1 |
-
import altair as alt
|
| 2 |
-
import numpy as np
|
| 3 |
-
import pandas as pd
|
| 4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
Edit `/streamlit_app.py` to customize this app to your heart's desire :heart:.
|
| 10 |
-
If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
|
| 11 |
-
forums](https://discuss.streamlit.io).
|
| 12 |
-
|
| 13 |
-
In the meantime, below is an example of what you can do with just a few lines of code:
|
| 14 |
-
"""
|
| 15 |
-
|
| 16 |
-
num_points = st.slider("Number of points in spiral", 1, 10000, 1100)
|
| 17 |
-
num_turns = st.slider("Number of turns in spiral", 1, 300, 31)
|
| 18 |
-
|
| 19 |
-
indices = np.linspace(0, 1, num_points)
|
| 20 |
-
theta = 2 * np.pi * num_turns * indices
|
| 21 |
-
radius = indices
|
| 22 |
-
|
| 23 |
-
x = radius * np.cos(theta)
|
| 24 |
-
y = radius * np.sin(theta)
|
| 25 |
-
|
| 26 |
-
df = pd.DataFrame({
|
| 27 |
-
"x": x,
|
| 28 |
-
"y": y,
|
| 29 |
-
"idx": indices,
|
| 30 |
-
"rand": np.random.randn(num_points),
|
| 31 |
-
})
|
| 32 |
-
|
| 33 |
-
st.altair_chart(alt.Chart(df, height=700, width=700)
|
| 34 |
-
.mark_point(filled=True)
|
| 35 |
-
.encode(
|
| 36 |
-
x=alt.X("x", axis=None),
|
| 37 |
-
y=alt.Y("y", axis=None),
|
| 38 |
-
color=alt.Color("idx", legend=None, scale=alt.Scale()),
|
| 39 |
-
size=alt.Size("rand", legend=None, scale=alt.Scale(range=[1, 150])),
|
| 40 |
-
))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
+
import os
|
| 3 |
+
import tempfile
|
| 4 |
+
import numpy as np
|
| 5 |
+
from PIL import Image
|
| 6 |
+
from flc_core import flc_encode_file, flc_decode_file, cosine_similarity_bytes
|
| 7 |
+
|
| 8 |
+
st.set_page_config(page_title="FLC v1.3 | How it Works", layout="wide")
|
| 9 |
+
|
| 10 |
+
# Styling for a "Scientific Laboratory" look
|
| 11 |
+
st.markdown("""
|
| 12 |
+
<style>
|
| 13 |
+
.reportview-container { background: #0e1117; }
|
| 14 |
+
.main { color: #e0e0e0; }
|
| 15 |
+
h1, h2, h3 { color: #f1c40f !important; }
|
| 16 |
+
.stAlert { background-color: #1a1c24; border: 1px solid #f1c40f; }
|
| 17 |
+
</style>
|
| 18 |
+
""", unsafe_allow_html=True)
|
| 19 |
+
|
| 20 |
+
st.title("π Fibonacci Lattice Compression (FLC)")
|
| 21 |
+
st.markdown("""
|
| 22 |
+
**FLC v1.3** is a bio-inspired data compression architecture. Unlike standard ZIP or JPEG formats,
|
| 23 |
+
FLC uses the **Golden Ratio ($\Phi$)** to decide which parts of your data are "essential" and which are "noise."
|
| 24 |
+
""")
|
| 25 |
+
|
| 26 |
+
# --- PILLAR 1: THE EXPLAINER ---
|
| 27 |
+
with st.expander("π Step-by-Step: How does the 'Secret Sauce' work?"):
|
| 28 |
+
col1, col2, col3 = st.columns(3)
|
| 29 |
+
|
| 30 |
+
with col1:
|
| 31 |
+
st.markdown("### 1. Spectral Projection")
|
| 32 |
+
st.write("""
|
| 33 |
+
We treat your data like a sound wave. Using a **DCT (Discrete Cosine Transform)**,
|
| 34 |
+
we project the bits into frequency space.
|
| 35 |
+
* **Low Frequencies:** The "skeleton" of your data.
|
| 36 |
+
* **High Frequencies:** The "dust" and fine details.
|
| 37 |
+
""")
|
| 38 |
+
|
| 39 |
+
with col2:
|
| 40 |
+
st.markdown("### 2. The Golden Filter")
|
| 41 |
+
st.write("""
|
| 42 |
+
Instead of treating all frequencies equally, FLC uses **Fibonacci Bands**.
|
| 43 |
+
We compress the 'dust' using steps based on the **Golden Ratio ($\Phi \approx 1.618$)**.
|
| 44 |
+
As the frequency increases, the compression gets exponentially more aggressive.
|
| 45 |
+
""")
|
| 46 |
+
|
| 47 |
+
with col3:
|
| 48 |
+
with st.container():
|
| 49 |
+
st.markdown("### 3. Fibonacci Coding")
|
| 50 |
+
st.write("""
|
| 51 |
+
Standard computers use 8-bit bytes. FLC uses **Fibonacci Binary**.
|
| 52 |
+
It's a "universal code" that uses the sum of Fibonacci numbers to represent values,
|
| 53 |
+
making the compressed stream incredibly resilient and dense.
|
| 54 |
+
""")
|
| 55 |
+
|
| 56 |
+
st.divider()
|
| 57 |
+
|
| 58 |
+
# --- PILLAR 2: THE INTERACTIVE DEMO ---
|
| 59 |
+
st.header("π§ͺ Test the Horizon")
|
| 60 |
+
with st.sidebar:
|
| 61 |
+
st.header("ποΈ Architecture Params")
|
| 62 |
+
st.info("Adjusting these changes how the 'Secret Sauce' math is applied.")
|
| 63 |
+
|
| 64 |
+
quality_map = {
|
| 65 |
+
"High Compression (Lossy)": {"bands": 6, "step": 0.08, "desc": "Aggressive $\Phi$-scaling."},
|
| 66 |
+
"Balanced": {"bands": 12, "step": 0.005, "desc": "The Golden Mean of fidelity."},
|
| 67 |
+
"Near-Lossless": {"bands": 24, "step": 0.0001, "desc": "Full spectral recovery."}
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
tier = st.radio("Fidelity Tier", list(quality_map.keys()), index=1)
|
| 71 |
+
st.caption(quality_map[tier]["desc"])
|
| 72 |
+
|
| 73 |
+
st.subheader("Visual Overlays")
|
| 74 |
+
show_spiral = st.checkbox("Fibonacci Spiral Outlines", value=True)
|
| 75 |
+
show_ring = st.checkbox("Event Horizon Ring", value=True)
|
| 76 |
+
|
| 77 |
+
uploaded_file = st.file_uploader("Upload a file (Image, Text, or Binary)", type=["bin", "png", "jpg", "txt"])
|
| 78 |
+
|
| 79 |
+
if uploaded_file is not None:
|
| 80 |
+
with tempfile.TemporaryDirectory() as tmpdir:
|
| 81 |
+
in_path = os.path.join(tmpdir, "input.bin")
|
| 82 |
+
out_flc = os.path.join(tmpdir, "output.flc")
|
| 83 |
+
out_gif = os.path.join(tmpdir, "unzip.gif")
|
| 84 |
+
recovered_path = os.path.join(tmpdir, "recovered.bin")
|
| 85 |
+
|
| 86 |
+
with open(in_path, "wb") as f:
|
| 87 |
+
f.write(uploaded_file.getbuffer())
|
| 88 |
+
|
| 89 |
+
if st.button("RUN HOLOGRAPHIC RECONSTRUCTION"):
|
| 90 |
+
with st.status("Initializing Fibonacci Manifolds...", expanded=True) as status:
|
| 91 |
+
st.write("Transforming data to Frequency Space...")
|
| 92 |
+
enc = flc_encode_file(
|
| 93 |
+
in_path, out_flc, unzip_gif=out_gif,
|
| 94 |
+
n_bands=quality_map[tier]["bands"],
|
| 95 |
+
base_step=quality_map[tier]["step"]
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
st.write("Applying $\Phi$-scaled quantization...")
|
| 99 |
+
dec = flc_decode_file(out_flc, recovered_path)
|
| 100 |
+
|
| 101 |
+
st.write("Generating Holographic Unzip visualization...")
|
| 102 |
+
status.update(label="Reconstruction Complete!", state="complete", expanded=False)
|
| 103 |
+
|
| 104 |
+
# Results Section
|
| 105 |
+
st.subheader("π Compression Performance")
|
| 106 |
+
c1, c2, c3, c4 = st.columns(4)
|
| 107 |
+
c1.metric("Original Size", f"{enc['n_bytes']} B")
|
| 108 |
+
c2.metric("Compressed Size", f"{enc['payload_len']} B")
|
| 109 |
+
c3.metric("Ratio", f"{enc['ratio']:.2%}")
|
| 110 |
+
|
| 111 |
+
# Calculate Similarity
|
| 112 |
+
orig_data = open(in_path, "rb").read()
|
| 113 |
+
reco_data = open(recovered_path, "rb").read()
|
| 114 |
+
fidelity = cosine_similarity_bytes(orig_data, reco_data)
|
| 115 |
+
c4.metric("Data Fidelity", f"{fidelity*100:.2f}%")
|
| 116 |
+
|
| 117 |
+
st.divider()
|
| 118 |
+
|
| 119 |
+
# Visualization
|
| 120 |
+
st.header("ποΈ The Unzip Sequence")
|
| 121 |
+
st.markdown("""
|
| 122 |
+
This animation shows the **Progressive Reconstruction**.
|
| 123 |
+
The 'Hologram' on the left shows the frequency data being added band-by-band.
|
| 124 |
+
The 'Spiral' on the right shows the bits filling the Fibonacci tiles in real-time.
|
| 125 |
+
""")
|
| 126 |
+
|
| 127 |
+
if os.path.exists(out_gif):
|
| 128 |
+
st.image(out_gif, use_container_width=True)
|
| 129 |
+
|
| 130 |
+
st.info("π‘ Notice how the general shape appears first, and the fine details (noise) appear last. This is the hallmark of Spectral Compression.")
|
| 131 |
+
|
| 132 |
+
with open(out_flc, "rb") as f:
|
| 133 |
+
st.download_button("π₯ Download Encoded .FLC File", f, file_name="demo.flc")
|
| 134 |
|
| 135 |
+
else:
|
| 136 |
+
st.warning("Please upload a file to visualize the Fibonacci transformation.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|