Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
import numpy as np
|
| 4 |
+
from sklearn.datasets import fetch_openml
|
| 5 |
+
from sklearn.model_selection import train_test_split
|
| 6 |
+
from sklearn.linear_model import LinearRegression
|
| 7 |
+
from sklearn.preprocessing import StandardScaler
|
| 8 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
| 9 |
+
import matplotlib.pyplot as plt
|
| 10 |
+
import seaborn as sns
|
| 11 |
+
|
| 12 |
+
# Page setup
|
| 13 |
+
st.set_page_config(page_title="Explore Linear Regression", layout="wide")
|
| 14 |
+
st.title("π‘ Linear Regression with the Boston Housing Dataset")
|
| 15 |
+
|
| 16 |
+
# Intro
|
| 17 |
+
st.markdown("""
|
| 18 |
+
## π What is Linear Regression?
|
| 19 |
+
|
| 20 |
+
Linear Regression models the relationship between a continuous outcome and one or more input variables (features).
|
| 21 |
+
|
| 22 |
+
**Equation:**
|
| 23 |
+
\[
|
| 24 |
+
\\hat{y} = w_1x_1 + w_2x_2 + ... + w_nx_n + b
|
| 25 |
+
\]
|
| 26 |
+
|
| 27 |
+
It tries to find the line (or hyperplane) that best fits the data.
|
| 28 |
+
|
| 29 |
+
---
|
| 30 |
+
""")
|
| 31 |
+
|
| 32 |
+
# Load dataset from OpenML (Boston housing)
|
| 33 |
+
@st.cache_data
|
| 34 |
+
def load_data():
|
| 35 |
+
boston = fetch_openml(name="boston", version=1, as_frame=True)
|
| 36 |
+
df = boston.frame
|
| 37 |
+
return df
|
| 38 |
+
|
| 39 |
+
df = load_data()
|
| 40 |
+
|
| 41 |
+
st.subheader("π Dataset: Boston Housing Prices")
|
| 42 |
+
st.markdown("This dataset contains information about houses in Boston suburbs and aims to predict the **median value of owner-occupied homes**.")
|
| 43 |
+
st.dataframe(df.head(), use_container_width=True)
|
| 44 |
+
|
| 45 |
+
# Feature selection
|
| 46 |
+
target_col = "MEDV"
|
| 47 |
+
X = df.drop(columns=target_col)
|
| 48 |
+
y = df[target_col]
|
| 49 |
+
|
| 50 |
+
# Feature scaling
|
| 51 |
+
scaler = StandardScaler()
|
| 52 |
+
X_scaled = scaler.fit_transform(X)
|
| 53 |
+
|
| 54 |
+
# Train-test split
|
| 55 |
+
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
|
| 56 |
+
|
| 57 |
+
# Model training
|
| 58 |
+
model = LinearRegression()
|
| 59 |
+
model.fit(X_train, y_train)
|
| 60 |
+
y_pred = model.predict(X_test)
|
| 61 |
+
|
| 62 |
+
# Evaluation
|
| 63 |
+
mse = mean_squared_error(y_test, y_pred)
|
| 64 |
+
r2 = r2_score(y_test, y_pred)
|
| 65 |
+
|
| 66 |
+
st.success(f"π Model Performance: RΒ² = {r2:.2f}, MSE = {mse:.2f}")
|
| 67 |
+
|
| 68 |
+
# Feature coefficients
|
| 69 |
+
st.markdown("### π Coefficients (Feature Importance)")
|
| 70 |
+
coef_df = pd.DataFrame({
|
| 71 |
+
"Feature": X.columns,
|
| 72 |
+
"Coefficient": model.coef_
|
| 73 |
+
}).sort_values(by="Coefficient", key=abs, ascending=False)
|
| 74 |
+
|
| 75 |
+
st.dataframe(coef_df, use_container_width=True)
|
| 76 |
+
|
| 77 |
+
# Actual vs Predicted Plot
|
| 78 |
+
st.markdown("### π Actual vs Predicted Home Prices")
|
| 79 |
+
fig1, ax1 = plt.subplots(figsize=(8, 5))
|
| 80 |
+
sns.scatterplot(x=y_test, y=y_pred, ax=ax1, alpha=0.7)
|
| 81 |
+
ax1.plot([y_test.min(), y_test.max()], [y_test.min(), y_test.max()], '--r')
|
| 82 |
+
ax1.set_xlabel("Actual MEDV")
|
| 83 |
+
ax1.set_ylabel("Predicted MEDV")
|
| 84 |
+
ax1.set_title("Actual vs Predicted Home Values")
|
| 85 |
+
st.pyplot(fig1)
|
| 86 |
+
|
| 87 |
+
# Residuals Plot
|
| 88 |
+
st.markdown("### π§ Residual Plot (Errors)")
|
| 89 |
+
residuals = y_test - y_pred
|
| 90 |
+
fig2, ax2 = plt.subplots(figsize=(8, 5))
|
| 91 |
+
sns.histplot(residuals, kde=True, ax=ax2, color="purple")
|
| 92 |
+
ax2.set_title("Distribution of Residuals")
|
| 93 |
+
ax2.set_xlabel("Error (Actual - Predicted)")
|
| 94 |
+
st.pyplot(fig2)
|
| 95 |
+
|
| 96 |
+
# Summary
|
| 97 |
+
st.markdown("""
|
| 98 |
+
---
|
| 99 |
+
## π Key Takeaways
|
| 100 |
+
|
| 101 |
+
- **Linear Regression** is great for understanding relationships and making simple predictions.
|
| 102 |
+
- **Coefficients** show how each feature affects the target.
|
| 103 |
+
- **Residuals** help assess how well the model fits the data.
|
| 104 |
+
|
| 105 |
+
### β
Use Linear Regression when:
|
| 106 |
+
- The outcome is **continuous**
|
| 107 |
+
- Thereβs a **linear trend**
|
| 108 |
+
- You need **interpretability** over complexity
|
| 109 |
+
|
| 110 |
+
π― *Pro Tip:* Try removing or combining features and observe how it affects accuracy and residuals!
|
| 111 |
+
""")
|