File size: 13,504 Bytes
e1832f4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import numpy as np
import cv2 as cv

def iou_obb_pair(i, j, bboxes1, bboxes2):
    """
    Compute IoU for the rotated rectangles at index i and j in the batches `bboxes1`, `bboxes2` .
    """
    rect1 = bboxes1[int(i)]
    rect2 = bboxes2[int(j)]
    
    (cx1, cy1, w1, h1, angle1) = rect1[0:5]
    (cx2, cy2, w2, h2, angle2) = rect2[0:5]
    
    
    r1 = ((cx1, cy1), (w1, h1), angle1)
    r2 = ((cx2, cy2), (w2, h2), angle2)
    
    # Compute intersection
    ret, intersect = cv.rotatedRectangleIntersection(r1, r2)
    if ret == 0 or intersect is None:
        return 0.0  # No intersection
    
    # Calculate intersection area
    intersection_area = cv.contourArea(intersect)
    
    # Calculate union area
    area1 = w1 * h1
    area2 = w2 * h2
    union_area = area1 + area2 - intersection_area
    
    # Compute IoU
    return intersection_area / union_area if union_area > 0 else 0.0

class AssociationFunction:
    def __init__(self, w, h, asso_mode="iou"):
        """
        Initializes the AssociationFunction class with the necessary parameters for bounding box operations.
        The association function is selected based on the `asso_mode` string provided during class creation.
        
        Parameters:
        w (int): The width of the frame, used for normalizing centroid distance.
        h (int): The height of the frame, used for normalizing centroid distance.
        asso_mode (str): The association function to use (e.g., "iou", "giou", "centroid", etc.).
        """
        self.w = w
        self.h = h
        self.asso_mode = asso_mode
        self.asso_func = self._get_asso_func(asso_mode)

    @staticmethod
    def iou_batch(bboxes1, bboxes2) -> np.ndarray:
        bboxes2 = np.expand_dims(bboxes2, 0)
        bboxes1 = np.expand_dims(bboxes1, 1)

        xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
        yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
        yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        wh = w * h
        o = wh / (
            (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) +
            (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) -
            wh
        )
        return o
    
    @staticmethod
    def iou_batch_obb(bboxes1, bboxes2) -> np.ndarray:

        N, M = len(bboxes1), len(bboxes2)

        def wrapper(i, j):
            return iou_obb_pair(i, j, bboxes1, bboxes2)
        
        iou_matrix = np.fromfunction(np.vectorize(wrapper), shape=(N, M), dtype=int)
        return iou_matrix

    @staticmethod
    def hmiou_batch(bboxes1, bboxes2):
        """
        Compute a modified Intersection over Union (hIoU) between two batches of bounding boxes,
        incorporating a vertical overlap ratio.

        Parameters:
        - bboxes1: (N, 4) array of bounding boxes [x1, y1, x2, y2]
        - bboxes2: (M, 4) array of bounding boxes [x1, y1, x2, y2]

        Returns:
        - hmiou: (N, M) array where hmiou[i, j] is the modified IoU between bboxes1[i] and bboxes2[j]
        """
        # Expand dimensions for broadcasting
        bboxes1 = np.expand_dims(bboxes1, axis=1)  # Shape: (N, 1, 4)
        bboxes2 = np.expand_dims(bboxes2, axis=0)  # Shape: (1, M, 4)

        # Compute vertical overlap ratio 'o'
        intersect_y1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        intersect_y2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
        intersection_height = np.maximum(0.0, intersect_y2 - intersect_y1)

        union_y1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])
        union_y2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])
        union_height = np.maximum(1e-10, union_y2 - union_y1)

        o = intersection_height / union_height

        # Compute standard IoU
        inter_x1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
        inter_y1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        inter_x2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
        inter_y2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])

        inter_w = np.maximum(0.0, inter_x2 - inter_x1)
        inter_h = np.maximum(0.0, inter_y2 - inter_y1)
        inter_area = inter_w * inter_h

        area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])  # Shape: (N, 1)
        area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1])  # Shape: (1, M)

        union_area = area1 + area2 - inter_area

        iou = inter_area / (union_area + 1e-10)

        # Modify IoU with vertical overlap ratio
        hmiou = iou * o

        return hmiou

    @staticmethod
    def giou_batch(bboxes1, bboxes2) -> np.ndarray:
        """
        :param bboxes1: predict of bbox(N,4)(x1,y1,x2,y2)
        :param bboxes2: groundtruth of bbox(N,4)(x1,y1,x2,y2)
        :return:
        """
        # Ensure predict's bbox form
        bboxes2 = np.expand_dims(bboxes2, 0)
        bboxes1 = np.expand_dims(bboxes1, 1)

        xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
        yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
        yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        wh = w * h  # Intersection area

        # Compute areas of individual boxes
        area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])
        area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1])

        # Union area
        union_area = area1 + area2 - wh

        iou = wh / union_area

        xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0])
        yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])
        xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2])
        yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])
        wc = xxc2 - xxc1
        hc = yyc2 - yyc1
        assert (wc > 0).all() and (hc > 0).all()
        area_enclose = wc * hc  # Area of the smallest enclosing box

        # Corrected GIoU computation
        giou = iou - (area_enclose - union_area) / area_enclose
        giou = (giou + 1.0) / 2.0  # Resize from (-1,1) to (0,1)
        return giou


    def centroid_batch(self, bboxes1, bboxes2) -> np.ndarray:
        centroids1 = np.stack(((bboxes1[..., 0] + bboxes1[..., 2]) / 2,
                               (bboxes1[..., 1] + bboxes1[..., 3]) / 2), axis=-1)
        centroids2 = np.stack(((bboxes2[..., 0] + bboxes2[..., 2]) / 2,
                               (bboxes2[..., 1] + bboxes2[..., 3]) / 2), axis=-1)

        centroids1 = np.expand_dims(centroids1, 1)
        centroids2 = np.expand_dims(centroids2, 0)

        distances = np.sqrt(np.sum((centroids1 - centroids2) ** 2, axis=-1))
        norm_factor = np.sqrt(self.w ** 2 + self.h ** 2)
        normalized_distances = distances / norm_factor

        return 1 - normalized_distances
    
    def centroid_batch_obb(self, bboxes1, bboxes2) -> np.ndarray:
        centroids1 = np.stack((bboxes1[..., 0], bboxes1[..., 1]),axis=-1)
        centroids2 = np.stack((bboxes2[..., 0], bboxes2[..., 1]),axis=-1)

        centroids1 = np.expand_dims(centroids1, 1)
        centroids2 = np.expand_dims(centroids2, 0)

        distances = np.sqrt(np.sum((centroids1 - centroids2) ** 2, axis=-1))
        norm_factor = np.sqrt(self.w ** 2 + self.h ** 2)
        normalized_distances = distances / norm_factor

        return 1 - normalized_distances
    
    
    @staticmethod
    def ciou_batch(bboxes1, bboxes2) -> np.ndarray:
        """
        Calculate Complete Intersection over Union (CIoU) for batches of bounding boxes.

        :param bboxes1: Predicted bounding boxes of shape (N, 4) as (x1, y1, x2, y2)
        :param bboxes2: Ground truth bounding boxes of shape (N, 4) as (x1, y1, x2, y2)
        :return: CIoU scores scaled between 0 and 1
        """
        epsilon = 1e-7  # Small value to prevent division by zero

        # Expand dimensions for broadcasting
        bboxes2 = np.expand_dims(bboxes2, 0)  # Shape: (1, M, 4)
        bboxes1 = np.expand_dims(bboxes1, 1)  # Shape: (N, 1, 4)

        # Calculate the intersection box
        xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
        yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
        yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        wh = w * h

        # Calculate IoU
        area1 = (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])
        area2 = (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1])
        iou = wh / (area1 + area2 - wh + epsilon)

        # Calculate center points
        centerx1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.0
        centery1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.0
        centerx2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.0
        centery2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.0

        # Calculate squared center distance
        inner_diag = (centerx1 - centerx2) ** 2 + (centery1 - centery2) ** 2

        # Calculate smallest enclosing box diagonal
        xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0])
        yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])
        xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2])
        yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])
        outer_diag = (xxc2 - xxc1) ** 2 + (yyc2 - yyc1) ** 2 + epsilon

        # Calculate aspect ratio consistency
        w1 = bboxes1[..., 2] - bboxes1[..., 0]
        h1 = bboxes1[..., 3] - bboxes1[..., 1]
        w2 = bboxes2[..., 2] - bboxes2[..., 0]
        h2 = bboxes2[..., 3] - bboxes2[..., 1]

        # Prevent division by zero
        h2 = h2 + epsilon
        h1 = h1 + epsilon
        arctan_diff = np.arctan(w2 / h2) - np.arctan(w1 / h1)
        v = (4 / (np.pi ** 2)) * (arctan_diff ** 2)

        # Calculate alpha
        S = 1 - iou
        alpha = v / (S + v + epsilon)

        # Compute CIoU
        ciou = iou - (inner_diag / outer_diag) + (alpha * v)

        # Scale CIoU to [0, 1]
        return (ciou + 1) / 2.0

    
    def diou_batch(bboxes1, bboxes2) -> np.ndarray:
        """
        :param bbox_p: predict of bbox(N,4)(x1,y1,x2,y2)
        :param bbox_g: groundtruth of bbox(N,4)(x1,y1,x2,y2)
        :return:
        """
        # for details should go to https://arxiv.org/pdf/1902.09630.pdf
        # ensure predict's bbox form
        bboxes2 = np.expand_dims(bboxes2, 0)
        bboxes1 = np.expand_dims(bboxes1, 1)

        # calculate the intersection box
        xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
        yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
        xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
        yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
        w = np.maximum(0.0, xx2 - xx1)
        h = np.maximum(0.0, yy2 - yy1)
        wh = w * h
        iou = wh / (
            (bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1]) +
            (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) -
            wh
        )

        centerx1 = (bboxes1[..., 0] + bboxes1[..., 2]) / 2.0
        centery1 = (bboxes1[..., 1] + bboxes1[..., 3]) / 2.0
        centerx2 = (bboxes2[..., 0] + bboxes2[..., 2]) / 2.0
        centery2 = (bboxes2[..., 1] + bboxes2[..., 3]) / 2.0

        inner_diag = (centerx1 - centerx2) ** 2 + (centery1 - centery2) ** 2

        xxc1 = np.minimum(bboxes1[..., 0], bboxes2[..., 0])
        yyc1 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])
        xxc2 = np.maximum(bboxes1[..., 2], bboxes2[..., 2])
        yyc2 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])

        outer_diag = (xxc2 - xxc1) ** 2 + (yyc2 - yyc1) ** 2
        diou = iou - inner_diag / outer_diag

        return (diou + 1) / 2.0 
    

    @staticmethod
    def run_asso_func(self, bboxes1, bboxes2):
        """
        Runs the selected association function (based on the initialization string) on the input bounding boxes.
        
        Parameters:
        bboxes1: First set of bounding boxes.
        bboxes2: Second set of bounding boxes.
        """
        return self.asso_func(bboxes1, bboxes2)

    def _get_asso_func(self, asso_mode):
        """
        Returns the corresponding association function based on the provided mode string.
        
        Parameters:
        asso_mode (str): The association function to use (e.g., "iou", "giou", "centroid", etc.).
        
        Returns:
        function: The appropriate function for the association calculation.
        """
        ASSO_FUNCS = {
            "iou": AssociationFunction.iou_batch,
            "iou_obb": AssociationFunction.iou_batch_obb,
            "hmiou": AssociationFunction.hmiou_batch,
            "giou": AssociationFunction.giou_batch,
            "ciou": AssociationFunction.ciou_batch,
            "diou": AssociationFunction.diou_batch,
            "centroid": self.centroid_batch,  # only not being staticmethod
            "centroid_obb": self.centroid_batch_obb
        }

        if self.asso_mode not in ASSO_FUNCS:
            raise ValueError(f"Invalid association mode: {self.asso_mode}. Choose from {list(ASSO_FUNCS.keys())}")

        return ASSO_FUNCS[self.asso_mode]