Spaces:
Running
Running
Upload app.R
Browse files
app.R
CHANGED
|
@@ -2,8 +2,7 @@ library(plumber)
|
|
| 2 |
|
| 3 |
#* @apiTitle Effect Size Calculator API
|
| 4 |
|
| 5 |
-
|
| 6 |
-
d.quantile <- function(x1, x2, degree = 5, silent = TRUE) {
|
| 7 |
|
| 8 |
# Input validation
|
| 9 |
if (!is.numeric(x1) || !is.numeric(x2)) {
|
|
@@ -35,9 +34,11 @@ d.quantile <- function(x1, x2, degree = 5, silent = TRUE) {
|
|
| 35 |
stop("Cannot compute effect size with empty groups after removing NAs.")
|
| 36 |
}
|
| 37 |
|
|
|
|
| 38 |
model1 <- fit_quantile_function(x1, degree)
|
| 39 |
model2 <- fit_quantile_function(x2, degree)
|
| 40 |
-
|
|
|
|
| 41 |
tie1 <- attr(model1, "tie_proportion")
|
| 42 |
tie2 <- attr(model2, "tie_proportion")
|
| 43 |
|
|
@@ -46,16 +47,22 @@ d.quantile <- function(x1, x2, degree = 5, silent = TRUE) {
|
|
| 46 |
"Note: Substantial ties detected (Group 1: %.1f%%, Group 2: %.1f%%).",
|
| 47 |
tie1 * 100, tie2 * 100
|
| 48 |
))
|
|
|
|
|
|
|
| 49 |
}
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
|
|
|
| 53 |
|
| 54 |
-
|
|
|
|
| 55 |
pooled_sd <- sqrt(weighted_pooled_variance)
|
| 56 |
|
|
|
|
| 57 |
mean_diff <- moments2$mean - moments1$mean
|
| 58 |
|
|
|
|
| 59 |
if (pooled_sd == 0) {
|
| 60 |
if (mean_diff == 0) {
|
| 61 |
d_q <- 0
|
|
@@ -67,6 +74,7 @@ d.quantile <- function(x1, x2, degree = 5, silent = TRUE) {
|
|
| 67 |
d_q <- mean_diff / pooled_sd
|
| 68 |
}
|
| 69 |
|
|
|
|
| 70 |
result <- list(
|
| 71 |
d_q = d_q,
|
| 72 |
group1_mean = moments1$mean,
|
|
@@ -78,18 +86,47 @@ d.quantile <- function(x1, x2, degree = 5, silent = TRUE) {
|
|
| 78 |
pooled_sd = pooled_sd,
|
| 79 |
n1 = n1,
|
| 80 |
n2 = n2,
|
| 81 |
-
degree = degree
|
|
|
|
|
|
|
| 82 |
)
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
result$tie_proportion_1 <- tie1
|
| 85 |
result$tie_proportion_2 <- tie2
|
|
|
|
|
|
|
| 86 |
|
|
|
|
| 87 |
return(result)
|
| 88 |
}
|
| 89 |
|
| 90 |
fit_quantile_function <- function(x, poly_degree,
|
| 91 |
check_monotonicity = FALSE,
|
| 92 |
-
min_degree =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
n <- length(x)
|
| 95 |
|
|
@@ -97,99 +134,251 @@ fit_quantile_function <- function(x, poly_degree,
|
|
| 97 |
stop("Need at least 3 observations to fit a polynomial quantile function.")
|
| 98 |
}
|
| 99 |
|
|
|
|
| 100 |
n_unique <- length(unique(x))
|
| 101 |
tie_proportion <- 1 - (n_unique / n)
|
| 102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
max_possible_degree <- n_unique - 1
|
| 104 |
|
| 105 |
if (poly_degree > max_possible_degree) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
poly_degree <- max_possible_degree
|
| 107 |
}
|
| 108 |
|
|
|
|
| 109 |
if (tie_proportion > 0.3 && poly_degree > 3) {
|
|
|
|
| 110 |
recommended_degree <- min(poly_degree, max(3, floor(n_unique / 2)))
|
| 111 |
if (recommended_degree < poly_degree) {
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
poly_degree <- recommended_degree
|
| 113 |
}
|
| 114 |
}
|
| 115 |
|
|
|
|
| 116 |
if (poly_degree < min_degree) {
|
| 117 |
stop(sprintf(
|
| 118 |
-
"Insufficient unique values (%d) to fit minimum polynomial degree (%d).",
|
| 119 |
-
n_unique, min_degree
|
| 120 |
-
|
|
|
|
| 121 |
}
|
| 122 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
avg_ranks <- rank(x, ties.method = "average")
|
|
|
|
|
|
|
| 124 |
p <- (avg_ranks - 0.5) / n
|
|
|
|
|
|
|
| 125 |
z <- qnorm(p)
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
current_degree <- poly_degree
|
| 128 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
attr(model, "sample_size") <- n
|
| 131 |
attr(model, "n_unique") <- n_unique
|
| 132 |
attr(model, "tie_proportion") <- tie_proportion
|
| 133 |
attr(model, "poly_degree") <- current_degree
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
return(model)
|
| 136 |
}
|
| 137 |
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
coeffs <- coef(model)
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
}
|
| 147 |
-
return(
|
| 148 |
}
|
| 149 |
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
subdivisions = 2000L,
|
| 159 |
-
rel.tol = 1e-8,
|
| 160 |
-
abs.tol = 1e-10,
|
| 161 |
-
stop.on.error = FALSE
|
| 162 |
-
)
|
| 163 |
|
| 164 |
-
mu <-
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
}
|
| 170 |
|
| 171 |
-
|
| 172 |
-
variance_integrand,
|
| 173 |
-
lower = -Inf,
|
| 174 |
-
upper = Inf,
|
| 175 |
-
subdivisions = 2000L,
|
| 176 |
-
rel.tol = 1e-8,
|
| 177 |
-
abs.tol = 1e-10,
|
| 178 |
-
stop.on.error = FALSE
|
| 179 |
-
)
|
| 180 |
|
| 181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
|
| 183 |
-
if (
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
}
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
return(list(
|
| 188 |
mean = mu,
|
| 189 |
-
variance =
|
| 190 |
))
|
| 191 |
}
|
| 192 |
|
|
|
|
| 193 |
# API endpoint
|
| 194 |
#* Calculate effect size from two groups
|
| 195 |
#* @param group1 Comma-separated numeric values for group 1
|
|
|
|
| 2 |
|
| 3 |
#* @apiTitle Effect Size Calculator API
|
| 4 |
|
| 5 |
+
d.quantile <- function(x1, x2, degree = 4, CI = .95, silent = T) {
|
|
|
|
| 6 |
|
| 7 |
# Input validation
|
| 8 |
if (!is.numeric(x1) || !is.numeric(x2)) {
|
|
|
|
| 34 |
stop("Cannot compute effect size with empty groups after removing NAs.")
|
| 35 |
}
|
| 36 |
|
| 37 |
+
# Step 1: Fit the polynomial models for each group
|
| 38 |
model1 <- fit_quantile_function(x1, degree)
|
| 39 |
model2 <- fit_quantile_function(x2, degree)
|
| 40 |
+
|
| 41 |
+
# Check for ties and warn user
|
| 42 |
tie1 <- attr(model1, "tie_proportion")
|
| 43 |
tie2 <- attr(model2, "tie_proportion")
|
| 44 |
|
|
|
|
| 47 |
"Note: Substantial ties detected (Group 1: %.1f%%, Group 2: %.1f%%).",
|
| 48 |
tie1 * 100, tie2 * 100
|
| 49 |
))
|
| 50 |
+
message("This suggests discrete/ordinal data. Results should be interpreted cautiously.")
|
| 51 |
+
message("Consider comparing multiple effect size measures for discrete data.")
|
| 52 |
}
|
| 53 |
|
| 54 |
+
# Step 2: Get the moments from each fitted model
|
| 55 |
+
moments1 <- get_moments_analytical(model1, group_label = "Group 1")
|
| 56 |
+
moments2 <- get_moments_analytical(model2, group_label = "Group 2")
|
| 57 |
|
| 58 |
+
# Step 3: Calculate the pooled standard deviation
|
| 59 |
+
weighted_pooled_variance <- (n1 * moments1$variance + n2 * moments2$variance) / (n1 + n2)
|
| 60 |
pooled_sd <- sqrt(weighted_pooled_variance)
|
| 61 |
|
| 62 |
+
# Step 4: Compute the effect size d_q
|
| 63 |
mean_diff <- moments2$mean - moments1$mean
|
| 64 |
|
| 65 |
+
# Handle edge cases
|
| 66 |
if (pooled_sd == 0) {
|
| 67 |
if (mean_diff == 0) {
|
| 68 |
d_q <- 0
|
|
|
|
| 74 |
d_q <- mean_diff / pooled_sd
|
| 75 |
}
|
| 76 |
|
| 77 |
+
# Return results
|
| 78 |
result <- list(
|
| 79 |
d_q = d_q,
|
| 80 |
group1_mean = moments1$mean,
|
|
|
|
| 86 |
pooled_sd = pooled_sd,
|
| 87 |
n1 = n1,
|
| 88 |
n2 = n2,
|
| 89 |
+
degree = degree,
|
| 90 |
+
model1 = model1,
|
| 91 |
+
model2 = model2
|
| 92 |
)
|
| 93 |
|
| 94 |
+
if(!is.na(CI)) {
|
| 95 |
+
if(CI <= 0 || CI >= 1) {
|
| 96 |
+
stop("CI must be between 0 and 1 (exclusive).")
|
| 97 |
+
}
|
| 98 |
+
|
| 99 |
+
# Standard error for d_q
|
| 100 |
+
se_dq <- sqrt((n1 + n2) / (n1 * n2) + (d_q^2) / (2 * (n1 + n2)))
|
| 101 |
+
|
| 102 |
+
df <- n1 + n2 - 2
|
| 103 |
+
alpha <- 1 - CI
|
| 104 |
+
t_crit <- qt(1 - alpha / 2, df)
|
| 105 |
+
|
| 106 |
+
ci_lower <- d_q - t_crit * se_dq
|
| 107 |
+
ci_upper <- d_q + t_crit * se_dq
|
| 108 |
+
|
| 109 |
+
result$ci_lower <- ci_lower
|
| 110 |
+
result$ci_upper <- ci_upper
|
| 111 |
+
result$ci_level <- CI
|
| 112 |
+
}
|
| 113 |
+
|
| 114 |
result$tie_proportion_1 <- tie1
|
| 115 |
result$tie_proportion_2 <- tie2
|
| 116 |
+
result$n_unique_1 <- attr(model1, "n_unique")
|
| 117 |
+
result$n_unique_2 <- attr(model2, "n_unique")
|
| 118 |
|
| 119 |
+
class(result) <- "d_quantile"
|
| 120 |
return(result)
|
| 121 |
}
|
| 122 |
|
| 123 |
fit_quantile_function <- function(x, poly_degree,
|
| 124 |
check_monotonicity = FALSE,
|
| 125 |
+
min_degree = 1) {
|
| 126 |
+
|
| 127 |
+
# ============================================================================
|
| 128 |
+
# Step 1: Input validation and tie detection
|
| 129 |
+
# ============================================================================
|
| 130 |
|
| 131 |
n <- length(x)
|
| 132 |
|
|
|
|
| 134 |
stop("Need at least 3 observations to fit a polynomial quantile function.")
|
| 135 |
}
|
| 136 |
|
| 137 |
+
# Count unique values to detect ties
|
| 138 |
n_unique <- length(unique(x))
|
| 139 |
tie_proportion <- 1 - (n_unique / n)
|
| 140 |
|
| 141 |
+
# ============================================================================
|
| 142 |
+
# Step 2: Adjust polynomial degree based on unique values
|
| 143 |
+
# ============================================================================
|
| 144 |
+
|
| 145 |
+
# Can't fit more parameters than unique data points
|
| 146 |
max_possible_degree <- n_unique - 1
|
| 147 |
|
| 148 |
if (poly_degree > max_possible_degree) {
|
| 149 |
+
warning(sprintf(
|
| 150 |
+
"Requested polynomial degree (%d) exceeds number of unique values (%d). ",
|
| 151 |
+
poly_degree, n_unique,
|
| 152 |
+
"Reducing to degree %d."
|
| 153 |
+
), max_possible_degree)
|
| 154 |
poly_degree <- max_possible_degree
|
| 155 |
}
|
| 156 |
|
| 157 |
+
# Additional reduction for substantial ties
|
| 158 |
if (tie_proportion > 0.3 && poly_degree > 3) {
|
| 159 |
+
# With >30% ties, be more conservative
|
| 160 |
recommended_degree <- min(poly_degree, max(3, floor(n_unique / 2)))
|
| 161 |
if (recommended_degree < poly_degree) {
|
| 162 |
+
warning(sprintf(
|
| 163 |
+
"High proportion of ties (%.1f%%). Reducing polynomial degree from %d to %d for stability.",
|
| 164 |
+
tie_proportion * 100, poly_degree, recommended_degree
|
| 165 |
+
))
|
| 166 |
poly_degree <- recommended_degree
|
| 167 |
}
|
| 168 |
}
|
| 169 |
|
| 170 |
+
# Ensure we stay above minimum
|
| 171 |
if (poly_degree < min_degree) {
|
| 172 |
stop(sprintf(
|
| 173 |
+
"Insufficient unique values (%d) to fit minimum polynomial degree (%d). ",
|
| 174 |
+
n_unique, min_degree,
|
| 175 |
+
"Need at least %d unique observations."
|
| 176 |
+
), min_degree + 1)
|
| 177 |
}
|
| 178 |
|
| 179 |
+
# ============================================================================
|
| 180 |
+
# Step 3: Compute ranks and z-scores (handles ties via midrank)
|
| 181 |
+
# ============================================================================
|
| 182 |
+
|
| 183 |
+
# Average ranks handle ties by assigning mean rank to tied observations
|
| 184 |
+
# Example: values [1, 2, 2, 3] get ranks [1, 2.5, 2.5, 4]
|
| 185 |
avg_ranks <- rank(x, ties.method = "average")
|
| 186 |
+
|
| 187 |
+
# Convert ranks to plotting positions
|
| 188 |
p <- (avg_ranks - 0.5) / n
|
| 189 |
+
|
| 190 |
+
# Transform to standard normal quantiles
|
| 191 |
z <- qnorm(p)
|
| 192 |
|
| 193 |
+
# ============================================================================
|
| 194 |
+
# Step 4: Fit polynomial, with optional monotonicity enforcement
|
| 195 |
+
# ============================================================================
|
| 196 |
+
|
| 197 |
current_degree <- poly_degree
|
| 198 |
+
degree_reduced <- FALSE
|
| 199 |
+
monotonic <- NULL # Will be checked if requested
|
| 200 |
+
|
| 201 |
+
if (check_monotonicity) {
|
| 202 |
+
# Iteratively reduce degree until monotonic or min_degree reached
|
| 203 |
+
while (current_degree >= min_degree) {
|
| 204 |
+
|
| 205 |
+
# Fit model at current degree
|
| 206 |
+
model <- lm(x ~ poly(z, current_degree, raw = TRUE))
|
| 207 |
+
|
| 208 |
+
# Check monotonicity
|
| 209 |
+
monotonicity_check <- check_monotonicity(model)
|
| 210 |
+
monotonic <- monotonicity_check$is_monotonic
|
| 211 |
+
|
| 212 |
+
if (monotonic) {
|
| 213 |
+
# Success - monotonic fit achieved
|
| 214 |
+
break
|
| 215 |
+
}
|
| 216 |
+
|
| 217 |
+
# Not monotonic - try lower degree
|
| 218 |
+
current_degree <- current_degree - 1
|
| 219 |
+
degree_reduced <- TRUE
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
if (current_degree < min_degree) {
|
| 223 |
+
stop(sprintf(
|
| 224 |
+
"Could not achieve monotonic fit even with minimum degree %d. ",
|
| 225 |
+
min_degree,
|
| 226 |
+
"Data may be too irregular or have insufficient unique values."
|
| 227 |
+
))
|
| 228 |
+
}
|
| 229 |
+
|
| 230 |
+
if (degree_reduced) {
|
| 231 |
+
warning(sprintf(
|
| 232 |
+
"Polynomial degree reduced from %d to %d to achieve monotonicity.",
|
| 233 |
+
poly_degree, current_degree
|
| 234 |
+
))
|
| 235 |
+
}
|
| 236 |
+
|
| 237 |
+
} else {
|
| 238 |
+
# Just fit at requested degree without monotonicity check
|
| 239 |
+
model <- lm(x ~ poly(z, current_degree, raw = TRUE))
|
| 240 |
+
|
| 241 |
+
# Optionally check monotonicity for diagnostic purposes (don't enforce)
|
| 242 |
+
if (exists("check_monotonicity", mode = "function")) {
|
| 243 |
+
monotonicity_check <- check_monotonicity(model)
|
| 244 |
+
monotonic <- monotonicity_check$is_monotonic
|
| 245 |
+
}
|
| 246 |
+
}
|
| 247 |
+
|
| 248 |
+
# ============================================================================
|
| 249 |
+
# Step 5: Store metadata as attributes
|
| 250 |
+
# ============================================================================
|
| 251 |
|
| 252 |
attr(model, "sample_size") <- n
|
| 253 |
attr(model, "n_unique") <- n_unique
|
| 254 |
attr(model, "tie_proportion") <- tie_proportion
|
| 255 |
attr(model, "poly_degree") <- current_degree
|
| 256 |
+
attr(model, "requested_degree") <- poly_degree
|
| 257 |
+
attr(model, "degree_reduced") <- degree_reduced
|
| 258 |
+
attr(model, "monotonic") <- monotonic
|
| 259 |
+
attr(model, "has_ties") <- tie_proportion > 0.01 # Flag if >1% ties
|
| 260 |
|
| 261 |
return(model)
|
| 262 |
}
|
| 263 |
|
| 264 |
+
check_monotonicity <- function(model, z_range = c(-3, 3), n_points = 100) {
|
| 265 |
+
|
| 266 |
+
z_seq <- seq(z_range[1], z_range[2], length.out = n_points)
|
| 267 |
+
|
| 268 |
+
# Get predictions
|
| 269 |
+
pred <- predict(model, newdata = data.frame(z = z_seq))
|
| 270 |
+
|
| 271 |
+
# Calculate finite differences (approximate derivatives)
|
| 272 |
+
derivatives <- diff(pred) / diff(z_seq)
|
| 273 |
+
|
| 274 |
+
# Check for violations (negative derivatives)
|
| 275 |
+
# Use small tolerance to avoid flagging numerical noise
|
| 276 |
+
tolerance <- -1e-6
|
| 277 |
+
violations <- sum(derivatives < tolerance)
|
| 278 |
+
|
| 279 |
+
min_deriv <- min(derivatives)
|
| 280 |
+
is_monotonic <- violations == 0
|
| 281 |
+
|
| 282 |
+
return(list(
|
| 283 |
+
is_monotonic = is_monotonic,
|
| 284 |
+
min_derivative = min_deriv,
|
| 285 |
+
violations = violations,
|
| 286 |
+
proportion_violations = violations / length(derivatives),
|
| 287 |
+
z_range_checked = z_range
|
| 288 |
+
))
|
| 289 |
+
}
|
| 290 |
+
|
| 291 |
+
get_moments_analytical <- function(model, group_label = "Unknown") {
|
| 292 |
+
|
| 293 |
+
# Extract coefficients and determine polynomial degree
|
| 294 |
coeffs <- coef(model)
|
| 295 |
+
k <- length(coeffs) - 1 # polynomial degree
|
| 296 |
+
|
| 297 |
+
# --------------------------------------------------------------------------
|
| 298 |
+
# Pre-compute standard normal raw moments: E[Z^j]
|
| 299 |
+
# --------------------------------------------------------------------------
|
| 300 |
+
# For j even: E[Z^j] = (j-1)!! = (j-1) × (j-3) × ... × 3 × 1
|
| 301 |
+
# For j odd: E[Z^j] = 0 (due to symmetry)
|
| 302 |
|
| 303 |
+
compute_moment <- function(j) {
|
| 304 |
+
if (j == 0) return(1) # E[Z^0] = 1 (total probability)
|
| 305 |
+
if (j %% 2 == 1) return(0) # Odd moments vanish
|
| 306 |
+
|
| 307 |
+
# Even moments: double factorial
|
| 308 |
+
# E[Z^2] = 1, E[Z^4] = 3, E[Z^6] = 15, E[Z^8] = 105, ...
|
| 309 |
+
result <- 1
|
| 310 |
+
for (i in seq(j - 1, 1, by = -2)) {
|
| 311 |
+
result <- result * i
|
| 312 |
}
|
| 313 |
+
return(result)
|
| 314 |
}
|
| 315 |
|
| 316 |
+
# We need moments up to degree 2k for computing E[X^2]
|
| 317 |
+
max_moment <- 2 * k
|
| 318 |
+
moments_z <- sapply(0:max_moment, compute_moment)
|
| 319 |
|
| 320 |
+
# --------------------------------------------------------------------------
|
| 321 |
+
# Compute mean: μ = E[X] = E[f(Z)] = Σ β_j E[Z^j]
|
| 322 |
+
# --------------------------------------------------------------------------
|
| 323 |
+
# Only even-powered terms contribute due to symmetry
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
+
mu <- 0
|
| 326 |
+
for (j in 0:k) {
|
| 327 |
+
mu <- mu + coeffs[j + 1] * moments_z[j + 1]
|
| 328 |
+
}
|
| 329 |
|
| 330 |
+
# --------------------------------------------------------------------------
|
| 331 |
+
# Compute variance: σ² = E[X²] - μ²
|
| 332 |
+
# First calculate E[X²] = E[(Σ β_i Z^i)²] = Σ_i Σ_j β_i β_j E[Z^(i+j)]
|
| 333 |
+
# --------------------------------------------------------------------------
|
| 334 |
+
|
| 335 |
+
E_X2 <- 0
|
| 336 |
+
for (i in 0:k) {
|
| 337 |
+
for (j in 0:k) {
|
| 338 |
+
power <- i + j
|
| 339 |
+
if (power <= max_moment) {
|
| 340 |
+
E_X2 <- E_X2 + coeffs[i + 1] * coeffs[j + 1] * moments_z[power + 1]
|
| 341 |
+
}
|
| 342 |
+
}
|
| 343 |
}
|
| 344 |
|
| 345 |
+
variance <- E_X2 - mu^2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 346 |
|
| 347 |
+
# --------------------------------------------------------------------------
|
| 348 |
+
# Handle numerical edge cases
|
| 349 |
+
# --------------------------------------------------------------------------
|
| 350 |
+
# Variance should always be non-negative, but numerical precision limits
|
| 351 |
+
# can occasionally produce tiny negative values
|
| 352 |
|
| 353 |
+
if (variance < 0) {
|
| 354 |
+
if (abs(variance) < 1e-10) {
|
| 355 |
+
# Likely just numerical noise - round to zero
|
| 356 |
+
variance <- 0
|
| 357 |
+
} else {
|
| 358 |
+
# Substantial negative variance indicates a real problem
|
| 359 |
+
warning(
|
| 360 |
+
"Variance for ", group_label, " is negative (",
|
| 361 |
+
format(variance, scientific = TRUE, digits = 3),
|
| 362 |
+
"). This indicates numerical instability in the polynomial fit. ",
|
| 363 |
+
"Consider reducing the polynomial degree or checking for data issues.",
|
| 364 |
+
call. = FALSE
|
| 365 |
+
)
|
| 366 |
+
# Set to zero to avoid downstream errors, but flag it
|
| 367 |
+
variance <- 0
|
| 368 |
+
}
|
| 369 |
}
|
| 370 |
|
| 371 |
+
# --------------------------------------------------------------------------
|
| 372 |
+
# Return results
|
| 373 |
+
# --------------------------------------------------------------------------
|
| 374 |
+
|
| 375 |
return(list(
|
| 376 |
mean = mu,
|
| 377 |
+
variance = variance
|
| 378 |
))
|
| 379 |
}
|
| 380 |
|
| 381 |
+
|
| 382 |
# API endpoint
|
| 383 |
#* Calculate effect size from two groups
|
| 384 |
#* @param group1 Comma-separated numeric values for group 1
|