File size: 8,011 Bytes
22c93a7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import re
import numpy as np
import sympy
from sympy.core.sympify import SympifyError
from sympy.parsing.latex import parse_latex
import signal
INVALID_ANSWER = "[invalidanswer]"
class timeout:
def __init__(self, seconds=1, error_message="Timeout"):
self.seconds = seconds
self.error_message = error_message
def handle_timeout(self, signum, frame):
raise TimeoutError(self.error_message)
def __enter__(self):
signal.signal(signal.SIGALRM, self.handle_timeout)
signal.alarm(self.seconds)
def __exit__(self, type, value, traceback):
signal.alarm(0)
def normalize_numeric(s):
if s is None:
return None
for unit in [
"eV",
" \\mathrm{~kg} \\cdot \\mathrm{m} / \\mathrm{s}",
" kg m/s",
"kg*m/s",
"kg",
"m/s",
"m / s",
"m s^{-1}",
"\\text{ m/s}",
" \\mathrm{m/s}",
" \\text{ m/s}",
"g/mole",
"g/mol",
"\\mathrm{~g}",
"\\mathrm{~g} / \\mathrm{mol}",
"W",
"erg/s",
"years",
"year",
"cm",
]:
s = s.replace(unit, "")
s = s.strip()
for maybe_unit in ["m", "s", "cm"]:
s = s.replace("\\mathrm{" + maybe_unit + "}", "")
s = s.replace("\\mathrm{~" + maybe_unit + "}", "")
s = s.strip()
s = s.strip("$")
try:
return float(eval(s))
except:
try:
expr = parse_latex(s)
if expr.is_number:
return float(expr)
return INVALID_ANSWER
except:
return INVALID_ANSWER
def numeric_equality(n1, n2, threshold=0.01):
if n1 is None or n2 is None:
return False
if np.isclose(n1, 0) or np.isclose(n2, 0) or np.isclose(n1 - n2, 0):
return np.abs(n1 - n2) < threshold * (n1 + n2) / 2
else:
return np.isclose(n1, n2)
def normalize_symbolic_equation(s):
if not isinstance(s, str):
return INVALID_ANSWER
if s.startswith("\\["):
s = s[2:]
if s.endswith("\\]"):
s = s[:-2]
s = s.replace("\\left(", "(")
s = s.replace("\\right)", ")")
s = s.replace("\\\\", "\\")
if s.startswith("$") or s.endswith("$"):
s = s.strip("$")
try:
maybe_expression = parse_latex(s)
if not isinstance(maybe_expression, sympy.core.relational.Equality):
# we have equation, not expression
return INVALID_ANSWER
else:
return maybe_expression
except:
return INVALID_ANSWER
class SymbolicMathMixin:
"""
Methods useful for parsing mathematical expressions from text and determining equivalence of expressions.
"""
SUBSTITUTIONS = [ # used for text normalize
("an ", ""),
("a ", ""),
(".$", "$"),
("\\$", ""),
(r"\ ", ""),
(" ", ""),
("mbox", "text"),
(",\\text{and}", ","),
("\\text{and}", ","),
("\\text{m}", "\\text{}"),
]
REMOVED_EXPRESSIONS = [ # used for text normalizer
"square",
"ways",
"integers",
"dollars",
"mph",
"inches",
"ft",
"hours",
"km",
"units",
"\\ldots",
"sue",
"points",
"feet",
"minutes",
"digits",
"cents",
"degrees",
"cm",
"gm",
"pounds",
"meters",
"meals",
"edges",
"students",
"childrentickets",
"multiples",
"\\text{s}",
"\\text{.}",
"\\text{\ns}",
"\\text{}^2",
"\\text{}^3",
"\\text{\n}",
"\\text{}",
r"\mathrm{th}",
r"^\circ",
r"^{\circ}",
r"\;",
r",\!",
"{,}",
'"',
"\\dots",
]
def normalize_tex(self, final_answer: str) -> str:
"""
Normalizes a string representing a mathematical expression.
Used as a preprocessing step before parsing methods.
Copied character for character from appendix D of Lewkowycz et al. (2022)
"""
final_answer = final_answer.split("=")[-1]
for before, after in self.SUBSTITUTIONS:
final_answer = final_answer.replace(before, after)
for expr in self.REMOVED_EXPRESSIONS:
final_answer = final_answer.replace(expr, "")
# Extract answer that is in LaTeX math, is bold,
# is surrounded by a box, etc.
final_answer = re.sub(r"(.*?)(\$)(.*?)(\$)(.*)", "$\\3$", final_answer)
final_answer = re.sub(r"(\\text\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\textbf\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\overline\{)(.*?)(\})", "\\2", final_answer)
final_answer = re.sub(r"(\\boxed\{)(.*)(\})", "\\2", final_answer)
# Normalize shorthand TeX:
# \fracab -> \frac{a}{b}
# \frac{abc}{bef} -> \frac{abc}{bef}
# \fracabc -> \frac{a}{b}c
# \sqrta -> \sqrt{a}
# \sqrtab -> sqrt{a}b
final_answer = re.sub(r"(frac)([^{])(.)", "frac{\\2}{\\3}", final_answer)
final_answer = re.sub(r"(sqrt)([^{])", "sqrt{\\2}", final_answer)
final_answer = final_answer.replace("$", "")
# Normalize 100,000 -> 100000
if final_answer.replace(",", "").isdigit():
final_answer = final_answer.replace(",", "")
return final_answer
def parse_tex(self, text: str, time_limit: int = 5) -> sympy.Basic:
"""
Wrapper around `sympy.parse_text` that outputs a SymPy expression.
Typically, you want to apply `normalize_text` as a preprocessing step.
"""
try:
with timeout(seconds=time_limit):
parsed = parse_latex(text)
except (
# general error handling: there is a long tail of possible sympy/other
# errors we would like to catch
Exception
) as e:
print(f"failed to parse {text} with exception {e}")
return None
return parsed
def is_exp_equiv(self, x1: sympy.Basic, x2: sympy.Basic, time_limit=5) -> bool:
"""
Determines whether two sympy expressions are equal.
"""
try:
with timeout(seconds=time_limit):
try:
diff = x1 - x2
except (SympifyError, ValueError, TypeError) as e:
print(f"Couldn't subtract {x1} and {x2} with exception {e}")
return False
try:
if sympy.simplify(diff) == 0:
return True
else:
return False
except (SympifyError, ValueError, TypeError) as e:
print(f"Failed to simplify {x1}-{x2} with {e}")
return False
except TimeoutError as e:
print(f"Timed out comparing {x1} and {x2}")
return False
except Exception as e:
print(f"failed on unrecognized exception {e}")
return False
def is_tex_equiv(self, x1: str, x2: str, time_limit=5) -> bool:
"""
Determines whether two (ideally normalized using `normalize_text`) TeX expressions are equal.
Does so by first checking for string exact-match, then falls back on sympy-equivalence,
following the (Lewkowycz et al. 2022) methodology.
"""
if x1 == x2:
# don't resort to sympy if we have full string match, post-normalization
return True
else:
return False
parsed_x2 = self.parse_tex(x2)
if not parsed_x2:
# if our reference fails to parse into a Sympy object,
# we forgo parsing + checking our generated answer.
return False
return self.is_exp_equiv(self.parse_tex(x1), parsed_x2, time_limit=time_limit)
|