File size: 11,401 Bytes
c4ef1cf
 
 
 
 
 
 
 
 
9513cca
 
 
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
 
9513cca
c4ef1cf
 
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
9513cca
c4ef1cf
 
 
 
9513cca
c4ef1cf
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
 
 
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
 
 
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
 
 
 
 
 
 
 
 
 
c4ef1cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
 
9513cca
c4ef1cf
 
 
 
 
 
 
 
 
 
9513cca
c4ef1cf
 
 
9513cca
c4ef1cf
 
9513cca
c4ef1cf
 
 
9513cca
c4ef1cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
"""
Pooling strategies for multi-vector embeddings.

Provides:
- Tile-level mean pooling: Preserves spatial structure (num_tiles × dim)
- Global mean pooling: Single vector (1 × dim)
- MaxSim scoring for ColBERT-style late interaction
"""

import logging
from typing import Optional, Union

import numpy as np
import torch

logger = logging.getLogger(__name__)


def _infer_output_dtype(
    embedding: Union[torch.Tensor, np.ndarray],
    output_dtype: Optional[np.dtype] = None,
) -> np.dtype:
    """Infer output dtype: use provided, else match input (fp16→fp16, bf16→fp32, fp32→fp32)."""
    if output_dtype is not None:
        return output_dtype
    if isinstance(embedding, torch.Tensor):
        if embedding.dtype == torch.float16:
            return np.float16
        return np.float32
    if isinstance(embedding, np.ndarray) and embedding.dtype == np.float16:
        return np.float16
    return np.float32


def tile_level_mean_pooling(
    embedding: Union[torch.Tensor, np.ndarray],
    num_tiles: int,
    patches_per_tile: int = 64,
    output_dtype: Optional[np.dtype] = None,
) -> np.ndarray:
    """
    Compute tile-level mean pooling for multi-vector embeddings.

    Instead of collapsing to 1×dim (global pooling), this preserves spatial
    structure by computing mean per tile → num_tiles × dim.

    This is our NOVEL contribution for scalable visual retrieval:
    - Faster than full MaxSim (fewer vectors to compare)
    - More accurate than global pooling (preserves spatial info)
    - Ideal for two-stage retrieval (prefetch with pooled, rerank with full)

    Args:
        embedding: Visual token embeddings [num_visual_tokens, dim]
        num_tiles: Number of tiles (including global tile)
        patches_per_tile: Patches per tile (64 for ColSmol)
        output_dtype: Output dtype (default: infer from input, fp16→fp16, bf16→fp32)

    Returns:
        Tile-level pooled embeddings [num_tiles, dim]

    Example:
        >>> # Image with 4×3 tiles + 1 global = 13 tiles
        >>> # Each tile has 64 patches → 832 visual tokens
        >>> pooled = tile_level_mean_pooling(embedding, num_tiles=13)
        >>> print(pooled.shape)  # (13, 128)
    """
    out_dtype = _infer_output_dtype(embedding, output_dtype)
    if isinstance(embedding, torch.Tensor):
        if embedding.dtype == torch.bfloat16:
            emb_np = embedding.cpu().float().numpy()
        else:
            emb_np = embedding.cpu().numpy().astype(np.float32)
    else:
        emb_np = np.array(embedding, dtype=np.float32)

    num_visual_tokens = emb_np.shape[0]
    expected_tokens = num_tiles * patches_per_tile

    if num_visual_tokens != expected_tokens:
        logger.debug(f"Token count mismatch: {num_visual_tokens} vs expected {expected_tokens}")
        actual_tiles = num_visual_tokens // patches_per_tile
        if actual_tiles * patches_per_tile != num_visual_tokens:
            actual_tiles += 1
        num_tiles = actual_tiles

    tile_embeddings = []
    for tile_idx in range(num_tiles):
        start_idx = tile_idx * patches_per_tile
        end_idx = min(start_idx + patches_per_tile, num_visual_tokens)

        if start_idx >= num_visual_tokens:
            break

        tile_patches = emb_np[start_idx:end_idx]
        tile_mean = tile_patches.mean(axis=0)
        tile_embeddings.append(tile_mean)

    return np.array(tile_embeddings, dtype=out_dtype)


def colpali_row_mean_pooling(
    embedding: Union[torch.Tensor, np.ndarray],
    grid_size: int = 32,
    output_dtype: Optional[np.dtype] = None,
) -> np.ndarray:
    out_dtype = _infer_output_dtype(embedding, output_dtype)
    if isinstance(embedding, torch.Tensor):
        if embedding.dtype == torch.bfloat16:
            emb_np = embedding.cpu().float().numpy()
        else:
            emb_np = embedding.cpu().numpy().astype(np.float32)
    else:
        emb_np = np.array(embedding, dtype=np.float32)

    num_tokens, dim = emb_np.shape
    expected = int(grid_size) * int(grid_size)
    if num_tokens != expected:
        raise ValueError(
            f"Expected {expected} visual tokens for grid_size={grid_size}, got {num_tokens}"
        )

    grid = emb_np.reshape(int(grid_size), int(grid_size), int(dim))
    pooled = grid.mean(axis=1)
    return pooled.astype(out_dtype)


def colsmol_experimental_pooling(
    embedding: Union[torch.Tensor, np.ndarray],
    num_tiles: int,
    patches_per_tile: int = 64,
    output_dtype: Optional[np.dtype] = None,
) -> np.ndarray:
    out_dtype = _infer_output_dtype(embedding, output_dtype)
    if isinstance(embedding, torch.Tensor):
        if embedding.dtype == torch.bfloat16:
            emb_np = embedding.cpu().float().numpy()
        else:
            emb_np = embedding.cpu().numpy().astype(np.float32)
    else:
        emb_np = np.array(embedding, dtype=np.float32)

    num_visual_tokens, dim = emb_np.shape
    if num_tiles <= 0:
        raise ValueError("num_tiles must be > 0")
    if patches_per_tile <= 0:
        raise ValueError("patches_per_tile must be > 0")

    last_tile_start = (int(num_tiles) - 1) * int(patches_per_tile)
    if last_tile_start >= num_visual_tokens:
        actual_tiles = int(num_visual_tokens) // int(patches_per_tile)
        if actual_tiles * int(patches_per_tile) != int(num_visual_tokens):
            actual_tiles += 1
        if actual_tiles <= 0:
            raise ValueError(
                f"Not enough tokens for num_tiles={num_tiles}, patches_per_tile={patches_per_tile}: got {num_visual_tokens}"
            )
        num_tiles = actual_tiles
        last_tile_start = (int(num_tiles) - 1) * int(patches_per_tile)

    prefix = emb_np[:last_tile_start]
    last_tile = emb_np[
        last_tile_start : min(last_tile_start + int(patches_per_tile), num_visual_tokens)
    ]

    if prefix.size:
        prefix_tiles = prefix.reshape(-1, int(patches_per_tile), int(dim))
        prefix_means = prefix_tiles.mean(axis=1)
    else:
        prefix_means = np.zeros((0, int(dim)), dtype=out_dtype)

    return np.concatenate([prefix_means.astype(out_dtype), last_tile.astype(out_dtype)], axis=0)


def colpali_experimental_pooling_from_rows(
    row_vectors: Union[torch.Tensor, np.ndarray],
    output_dtype: Optional[np.dtype] = None,
) -> np.ndarray:
    """
    Experimental "convolution-style" pooling with window size 3.

    For N input rows, produces N + 2 output vectors:
    - Position 0: row[0] alone (1 row)
    - Position 1: mean(rows[0:2]) (2 rows)
    - Position 2: mean(rows[0:3]) (3 rows)
    - Positions 3 to N-1: sliding window of 3 (rows[i-2:i+1])
    - Position N: mean(rows[N-2:N]) (last 2 rows)
    - Position N+1: row[N-1] alone (last row)

    For N=32 rows: produces 34 vectors.
    """
    out_dtype = _infer_output_dtype(row_vectors, output_dtype)
    if isinstance(row_vectors, torch.Tensor):
        if row_vectors.dtype == torch.bfloat16:
            rows = row_vectors.cpu().float().numpy()
        else:
            rows = row_vectors.cpu().numpy().astype(np.float32)
    else:
        rows = np.array(row_vectors, dtype=np.float32)

    n, dim = rows.shape
    if n < 1:
        raise ValueError("row_vectors must be non-empty")
    if n == 1:
        return rows.astype(out_dtype)
    if n == 2:
        return np.stack([rows[0], rows[:2].mean(axis=0), rows[1]], axis=0).astype(out_dtype)
    if n == 3:
        return np.stack(
            [
                rows[0],
                rows[:2].mean(axis=0),
                rows[:3].mean(axis=0),
                rows[1:3].mean(axis=0),
                rows[2],
            ],
            axis=0,
        ).astype(out_dtype)

    out = np.zeros((n + 2, dim), dtype=np.float32)
    out[0] = rows[0]
    out[1] = rows[:2].mean(axis=0)
    out[2] = rows[:3].mean(axis=0)
    for i in range(3, n):
        out[i] = rows[i - 2 : i + 1].mean(axis=0)
    out[n] = rows[n - 2 : n].mean(axis=0)
    out[n + 1] = rows[n - 1]
    return out.astype(out_dtype)


def global_mean_pooling(
    embedding: Union[torch.Tensor, np.ndarray],
    output_dtype: Optional[np.dtype] = None,
) -> np.ndarray:
    """
    Compute global mean pooling → single vector.

    This is the simplest pooling but loses all spatial information.
    Use for fastest retrieval when accuracy can be sacrificed.

    Args:
        embedding: Multi-vector embeddings [num_tokens, dim]
        output_dtype: Output dtype (default: infer from input, fp16→fp16, bf16→fp32)

    Returns:
        Pooled vector [dim]
    """
    out_dtype = _infer_output_dtype(embedding, output_dtype)
    if isinstance(embedding, torch.Tensor):
        if embedding.dtype == torch.bfloat16:
            emb_np = embedding.cpu().float().numpy()
        else:
            emb_np = embedding.cpu().numpy()
    else:
        emb_np = np.array(embedding)

    return emb_np.mean(axis=0).astype(out_dtype)


def compute_maxsim_score(
    query_embedding: np.ndarray,
    doc_embedding: np.ndarray,
    normalize: bool = True,
) -> float:
    """
    Compute ColBERT-style MaxSim late interaction score.

    For each query token, finds max similarity with any document token,
    then sums across query tokens.

    This is the standard scoring for ColBERT/ColPali:
    score = Σ_q max_d (sim(q, d))

    Args:
        query_embedding: Query embeddings [num_query_tokens, dim]
        doc_embedding: Document embeddings [num_doc_tokens, dim]
        normalize: L2 normalize embeddings before scoring (recommended)

    Returns:
        MaxSim score (higher is better)

    Example:
        >>> query = embedder.embed_query("budget allocation")
        >>> doc = embeddings[0]  # From embed_images
        >>> score = compute_maxsim_score(query, doc)
    """
    if normalize:
        # L2 normalize
        query_norm = query_embedding / (
            np.linalg.norm(query_embedding, axis=1, keepdims=True) + 1e-8
        )
        doc_norm = doc_embedding / (np.linalg.norm(doc_embedding, axis=1, keepdims=True) + 1e-8)
    else:
        query_norm = query_embedding
        doc_norm = doc_embedding

    # Compute similarity matrix: [num_query, num_doc]
    similarity_matrix = np.dot(query_norm, doc_norm.T)

    # MaxSim: For each query token, take max similarity with any doc token
    max_similarities = similarity_matrix.max(axis=1)

    # Sum across query tokens
    score = float(max_similarities.sum())

    return score


def compute_maxsim_batch(
    query_embedding: np.ndarray,
    doc_embeddings: list,
    normalize: bool = True,
) -> list:
    """
    Compute MaxSim scores for multiple documents efficiently.

    Args:
        query_embedding: Query embeddings [num_query_tokens, dim]
        doc_embeddings: List of document embeddings
        normalize: L2 normalize embeddings

    Returns:
        List of MaxSim scores
    """
    # Pre-normalize query once
    if normalize:
        query_norm = query_embedding / (
            np.linalg.norm(query_embedding, axis=1, keepdims=True) + 1e-8
        )
    else:
        query_norm = query_embedding

    scores = []
    for doc_emb in doc_embeddings:
        if normalize:
            doc_norm = doc_emb / (np.linalg.norm(doc_emb, axis=1, keepdims=True) + 1e-8)
        else:
            doc_norm = doc_emb

        sim_matrix = np.dot(query_norm, doc_norm.T)
        max_sims = sim_matrix.max(axis=1)
        scores.append(float(max_sims.sum()))

    return scores