Spaces:
Sleeping
Sleeping
File size: 26,955 Bytes
8133f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 |
#!/usr/bin/env python3
"""
Skeleton Data Augmentation for ST-GCN Fall Detection
This module provides augmentation strategies for skeleton sequence data to improve
model generalization and robustness. All augmentations preserve the spatial-temporal
structure required by ST-GCN while introducing controlled variations.
Input Format: (C, T, V, M) where
C = 3 channels (x, y, confidence)
T = 60 frames (temporal window)
V = 17 keypoints (COCO skeleton)
M = 1 person (max persons tracked)
Augmentation Strategies:
1. Horizontal Flip: Mirror skeleton across vertical axis with keypoint swapping
2. Gaussian Noise: Add random noise to x,y coordinates (preserves confidence)
3. Temporal Crop: Random crop + resize to simulate variable fall speeds
Reference: Issue #34 - ST-GCN Training Dataset Creation
"""
import numpy as np
from typing import Tuple, Optional
# COCO 17-keypoint left/right pairs for horizontal flip
# Format: (left_index, right_index)
COCO_LEFT_RIGHT_PAIRS = [
(1, 2), # left_eye <-> right_eye
(3, 4), # left_ear <-> right_ear
(5, 6), # left_shoulder <-> right_shoulder
(7, 8), # left_elbow <-> right_elbow
(9, 10), # left_wrist <-> right_wrist
(11, 12), # left_hip <-> right_hip
(13, 14), # left_knee <-> right_knee
(15, 16), # left_ankle <-> right_ankle
]
def augment_skeleton(data: np.ndarray, prob: float = 0.5) -> np.ndarray:
"""
Apply random augmentations to skeleton sequence data.
This function applies three augmentation strategies with probability `prob`:
1. Horizontal flip with keypoint swapping
2. Gaussian noise injection to x,y coordinates
3. Temporal crop and resize
Mathematical Formulations:
-------------------------
1. Horizontal Flip:
x' = -x
For each (left, right) keypoint pair: swap(left, right)
2. Gaussian Noise:
x' = x + N(0, sigma^2)
y' = y + N(0, sigma^2)
where N(0, sigma^2) ~ Normal(mean=0, std=0.01)
3. Temporal Crop & Resize:
T_crop ~ Uniform(0.8 * T, 1.0 * T)
start_frame ~ Uniform(0, T - T_crop)
cropped = data[:, start:start+T_crop, :, :]
resized = interpolate(cropped, T)
Args:
data: Skeleton data with shape (C, T, V, M) where
C = 3 (x, y, confidence)
T = 60 (number of frames)
V = 17 (number of keypoints)
M = 1 (number of persons)
prob: Probability of applying each augmentation (default: 0.5)
Returns:
augmented_data: Augmented skeleton data with same shape (C, T, V, M)
Example:
>>> data = np.random.rand(3, 60, 17, 1)
>>> augmented = augment_skeleton(data, prob=0.5)
>>> augmented.shape
(3, 60, 17, 1)
"""
C, T, V, M = data.shape
assert C == 3, f"Expected 3 channels (x, y, conf), got {C}"
assert V == 17, f"Expected 17 COCO keypoints, got {V}"
assert M == 1, f"Expected max 1 person, got {M}"
# Create a copy to avoid modifying original data
augmented_data = data.copy()
# 1. Horizontal Flip (flip x-coordinate + swap left/right keypoints)
if np.random.rand() < prob:
augmented_data = _horizontal_flip(augmented_data)
# 2. Random Noise Injection (add Gaussian noise to x,y only)
if np.random.rand() < prob:
augmented_data = _add_gaussian_noise(augmented_data)
# 3. Temporal Crop and Resize (crop 0.8-1.0 of length, resize back)
if np.random.rand() < prob:
augmented_data = _temporal_crop_resize(augmented_data)
return augmented_data
def _horizontal_flip(data: np.ndarray) -> np.ndarray:
"""
Horizontally flip skeleton by negating x-coordinate and swapping left/right keypoints.
Mathematical Formulation:
x' = -x
y' = y
conf' = conf
For each (left_idx, right_idx) pair: swap keypoints
Args:
data: Skeleton data (C, T, V, M)
Returns:
flipped_data: Horizontally flipped data (C, T, V, M)
"""
flipped_data = data.copy()
# Flip x-coordinate (channel 0)
flipped_data[0] = -flipped_data[0]
# Swap left/right keypoint pairs
for left_idx, right_idx in COCO_LEFT_RIGHT_PAIRS:
# Swap all channels (x, y, conf) for the keypoint pair
temp = flipped_data[:, :, left_idx, :].copy()
flipped_data[:, :, left_idx, :] = flipped_data[:, :, right_idx, :]
flipped_data[:, :, right_idx, :] = temp
return flipped_data
def _add_gaussian_noise(data: np.ndarray, std: float = 0.01) -> np.ndarray:
"""
Add Gaussian noise to x,y coordinates (preserves confidence channel).
Mathematical Formulation:
x' = x + N(0, sigma^2)
y' = y + N(0, sigma^2)
conf' = conf (unchanged)
where sigma = 0.01 (default)
The noise magnitude is calibrated for normalized coordinates in range [-0.5, 0.5].
With std=0.01, 99.7% of noise values fall within [-0.03, 0.03] (3-sigma rule).
Args:
data: Skeleton data (C, T, V, M)
std: Standard deviation of Gaussian noise (default: 0.01)
Returns:
noisy_data: Data with Gaussian noise added to x,y coordinates
"""
C, T, V, M = data.shape
noisy_data = data.copy()
# Generate Gaussian noise for x,y channels only (not confidence)
noise_shape = (2, T, V, M) # Only x,y channels
noise = np.random.normal(0, std, noise_shape).astype(data.dtype)
# Add noise to x,y channels (0, 1), leave confidence channel (2) unchanged
noisy_data[:2] += noise
return noisy_data
def _temporal_crop_resize(data: np.ndarray, crop_ratio_range: Tuple[float, float] = (0.8, 1.0)) -> np.ndarray:
"""
Randomly crop temporal sequence and resize back to original length.
This augmentation simulates variable fall speeds by compressing or expanding
the temporal dimension. A crop ratio of 0.8 means the fall happens 20% faster,
while 1.0 means no temporal change.
Mathematical Formulation:
T_crop ~ Uniform(crop_min * T, crop_max * T)
start ~ Uniform(0, T - T_crop)
cropped = data[:, start:start+T_crop, :, :]
resized = interpolate(cropped, T) using linear interpolation
Args:
data: Skeleton data (C, T, V, M)
crop_ratio_range: (min_ratio, max_ratio) for crop length (default: (0.8, 1.0))
Returns:
resized_data: Temporally augmented data with original shape (C, T, V, M)
"""
C, T, V, M = data.shape
min_ratio, max_ratio = crop_ratio_range
# Sample random crop ratio
crop_ratio = np.random.uniform(min_ratio, max_ratio)
crop_length = int(T * crop_ratio)
crop_length = max(1, crop_length) # Ensure at least 1 frame
# Sample random start position
max_start = max(0, T - crop_length)
start_frame = np.random.randint(0, max_start + 1) if max_start > 0 else 0
# Extract cropped window
cropped = data[:, start_frame:start_frame + crop_length, :, :]
# Resize back to original temporal length using linear interpolation
resized_data = _temporal_interpolate(cropped, T)
return resized_data
def _temporal_interpolate(data: np.ndarray, target_length: int) -> np.ndarray:
"""
Interpolate temporal dimension to target length using linear interpolation.
This function performs 1D linear interpolation along the temporal axis (axis=1)
for each channel, keypoint, and person independently.
Args:
data: Skeleton data (C, T, V, M)
target_length: Target number of frames
Returns:
interpolated_data: Data with temporal dimension resized to target_length
"""
C, T_src, V, M = data.shape
if T_src == target_length:
return data
# Create target time indices
src_indices = np.linspace(0, T_src - 1, T_src)
target_indices = np.linspace(0, T_src - 1, target_length)
# Interpolate each channel, keypoint, person combination
interpolated_data = np.zeros((C, target_length, V, M), dtype=data.dtype)
for c in range(C):
for v in range(V):
for m in range(M):
interpolated_data[c, :, v, m] = np.interp(
target_indices,
src_indices,
data[c, :, v, m]
)
return interpolated_data
def _normalize_by_hip_center(data: np.ndarray) -> np.ndarray:
"""
Normalize skeleton by hip center position and skeleton size (ST-GCN standard).
This is the recommended normalization method for skeleton-based action recognition,
following the ST-GCN paper and NTU RGB+D dataset preprocessing.
Algorithm:
----------
1. Calculate hip center from left_hip (11) and right_hip (12)
2. If hips have low confidence (<0.3), fallback to shoulder center
3. Center all keypoints by subtracting hip center
4. Calculate skeleton size as average shoulder-to-hip distance
5. Scale all coordinates by skeleton size
COCO Keypoints Used:
- 5: left_shoulder
- 6: right_shoulder
- 11: left_hip
- 12: right_hip
Args:
data: Skeleton data (C, T, V, M) with C=3 (x, y, conf)
Returns:
normalized_data: (C, T, V, M) centered at hip, scaled by skeleton size
- x,y channels: relative to hip center, scaled by skeleton size
- conf channel: unchanged
Example:
>>> data = np.random.rand(3, 60, 17, 1) * [3840, 2160, 1]
>>> normalized = _normalize_by_hip_center(data)
>>> # Hip center is now at (0, 0)
>>> hip_center_x = (normalized[0, :, 11, :] + normalized[0, :, 12, :]) / 2
>>> np.allclose(hip_center_x, 0.0, atol=1e-6)
True
"""
C, T, V, M = data.shape
normalized_data = data.copy()
# Extract hip keypoints (COCO: 11=left_hip, 12=right_hip)
left_hip_xy = data[:2, :, 11:12, :] # (2, T, 1, M)
right_hip_xy = data[:2, :, 12:13, :] # (2, T, 1, M)
left_hip_conf = data[2:3, :, 11:12, :] # (1, T, 1, M)
right_hip_conf = data[2:3, :, 12:13, :]# (1, T, 1, M)
# Calculate average hip confidence across all frames
left_hip_conf_mean = np.mean(left_hip_conf)
right_hip_conf_mean = np.mean(right_hip_conf)
# Determine center point (hip or shoulder fallback)
if left_hip_conf_mean >= 0.3 and right_hip_conf_mean >= 0.3:
# Normal case: Use hip center
center_point = (left_hip_xy + right_hip_xy) / 2.0 # (2, T, 1, M)
# Calculate skeleton size from shoulder-to-hip distance
left_shoulder_xy = data[:2, :, 5:6, :] # (2, T, 1, M)
right_shoulder_xy = data[:2, :, 6:7, :] # (2, T, 1, M)
# Left torso distance: ||left_shoulder - left_hip||
left_torso = left_shoulder_xy - left_hip_xy # (2, T, 1, M)
left_torso_dist = np.sqrt(np.sum(left_torso ** 2, axis=0)) # (T, 1, M)
# Right torso distance: ||right_shoulder - right_hip||
right_torso = right_shoulder_xy - right_hip_xy # (2, T, 1, M)
right_torso_dist = np.sqrt(np.sum(right_torso ** 2, axis=0)) # (T, 1, M)
# Average skeleton size across frames and left/right
skeleton_size = np.mean([left_torso_dist, right_torso_dist]) # scalar
else:
# Fallback: Use shoulder center if hips not detected
left_shoulder_xy = data[:2, :, 5:6, :]
right_shoulder_xy = data[:2, :, 6:7, :]
center_point = (left_shoulder_xy + right_shoulder_xy) / 2.0 # (2, T, 1, M)
# Use shoulder width as skeleton size estimate
shoulder_vector = right_shoulder_xy - left_shoulder_xy # (2, T, 1, M)
shoulder_width = np.sqrt(np.sum(shoulder_vector ** 2, axis=0)) # (T, 1, M)
skeleton_size = np.mean(shoulder_width) * 2.0 # Approximate torso height
# Prevent division by zero
skeleton_size = max(skeleton_size, 1e-6)
# Normalize x,y channels: center and scale
normalized_data[:2] = (normalized_data[:2] - center_point) / skeleton_size
# Confidence channel unchanged
# normalized_data[2] remains as is
return normalized_data
def _normalize_by_image_center(
data: np.ndarray,
img_width: int = 3840,
img_height: int = 2160
) -> np.ndarray:
"""
Legacy normalization by image center (for comparison only).
This method is NOT recommended for ST-GCN training as it:
- Includes absolute position information
- Varies with camera angle
- Does not normalize body size
Use this only for comparing with old implementations or specific use cases
where absolute position in frame matters.
Args:
data: Skeleton data (C, T, V, M)
img_width: Image width in pixels (default: 3840 for AI Hub 4K)
img_height: Image height in pixels (default: 2160 for AI Hub 4K)
Returns:
normalized_data: (C, T, V, M) with x,y in [-0.5, 0.5]
"""
C, T, V, M = data.shape
normalized_data = data.copy()
# Normalize x-coordinate (channel 0): [0, img_width] -> [-0.5, 0.5]
normalized_data[0] = (normalized_data[0] / img_width) - 0.5
# Normalize y-coordinate (channel 1): [0, img_height] -> [-0.5, 0.5]
normalized_data[1] = (normalized_data[1] / img_height) - 0.5
# Confidence channel (2) remains unchanged in [0, 1]
return normalized_data
def normalize_skeleton(
data: np.ndarray,
method: str = 'hip_center',
img_width: int = 3840,
img_height: int = 2160
) -> np.ndarray:
"""
Normalize skeleton coordinates using ST-GCN standard method.
This normalization removes absolute position information and makes the model
focus on relative pose patterns, which is critical for fall detection across
different camera angles (AI Hub 8-camera setup).
Methods:
--------
1. 'hip_center' (default, ST-GCN standard):
- Center: Hip center (average of left_hip and right_hip)
- Scale: Skeleton size (shoulder-to-hip distance)
- Fallback: Shoulder center if hips not detected
- Reference: ST-GCN (Yan et al., AAAI 2018), NTU RGB+D normalization
2. 'image_center' (legacy, not recommended):
- Center: Image center
- Scale: Image dimensions
- Use only for comparison with old implementations
Mathematical Formulations (hip_center):
----------------------------------------
Step 1: Calculate hip center
hip_center = (left_hip + right_hip) / 2 # COCO keypoints 11, 12
Step 2: Center all keypoints
x' = x - hip_center_x
y' = y - hip_center_y
Step 3: Scale by skeleton size (shoulder-to-hip distance)
skeleton_size = mean(||shoulder - hip||) over left and right
x'' = x' / skeleton_size
y'' = y' / skeleton_size
Advantages of hip_center normalization:
- Camera angle invariant (critical for 8-camera AI Hub dataset)
- Absolute position independent (person can be anywhere in frame)
- Body size normalized (tall/short people comparable)
- Matches ST-GCN paper and most skeleton action recognition works
Args:
data: Skeleton data with shape (C, T, V, M) where
C = 3 (x in pixels, y in pixels, confidence)
T = number of frames
V = 17 (COCO keypoints)
M = 1 (max persons)
method: Normalization method - 'hip_center' (default) or 'image_center'
img_width: Image width for image_center method (default: 3840 for AI Hub 4K)
img_height: Image height for image_center method (default: 2160 for AI Hub 4K)
Returns:
normalized_data: Normalized skeleton data with shape (C, T, V, M)
For hip_center: relative coordinates centered at hip, scaled by skeleton size
For image_center: x,y in [-0.5, 0.5], conf in [0, 1]
Example:
>>> # ST-GCN standard normalization
>>> data = np.random.rand(3, 60, 17, 1) * [3840, 2160, 1]
>>> normalized = normalize_skeleton(data, method='hip_center')
>>> # Hip is now at origin (0, 0)
>>> # Coordinates scaled by skeleton size
>>> # Legacy image center normalization
>>> normalized_legacy = normalize_skeleton(data, method='image_center')
>>> normalized_legacy[0].min(), normalized_legacy[0].max() # x range
(-0.5, 0.5)
"""
C, T, V, M = data.shape
assert C == 3, f"Expected 3 channels (x, y, conf), got {C}"
assert V == 17, f"Expected 17 COCO keypoints, got {V}"
if method == 'hip_center':
return _normalize_by_hip_center(data)
elif method == 'image_center':
return _normalize_by_image_center(data, img_width, img_height)
else:
raise ValueError(
f"Unknown normalization method: '{method}'. "
f"Use 'hip_center' (ST-GCN standard) or 'image_center' (legacy)."
)
def denormalize_skeleton(
data: np.ndarray,
method: str = 'hip_center',
hip_center: Optional[np.ndarray] = None,
skeleton_size: Optional[float] = None,
img_width: int = 3840,
img_height: int = 2160
) -> np.ndarray:
"""
Denormalize skeleton coordinates back to original space.
NOTE: For hip_center method, denormalization requires storing the original
hip_center and skeleton_size values during normalization. This function is
primarily for visualization purposes.
For most ST-GCN training workflows, you don't need denormalization since:
- Training works directly on normalized coordinates
- Model predictions are classification labels (not coordinates)
Methods:
--------
1. 'hip_center': Requires hip_center and skeleton_size parameters
2. 'image_center': Only requires img_width and img_height
Args:
data: Normalized skeleton data (C, T, V, M)
method: Denormalization method - 'hip_center' or 'image_center'
hip_center: Original hip center position (2, T, 1, M) - required for hip_center method
skeleton_size: Original skeleton size (scalar) - required for hip_center method
img_width: Image width for image_center method (default: 3840)
img_height: Image height for image_center method (default: 2160)
Returns:
denormalized_data: Skeleton data in original coordinate space
Example:
>>> # Hip center denormalization (requires original values)
>>> data_original = np.random.rand(3, 60, 17, 1) * [3840, 2160, 1]
>>> normalized = normalize_skeleton(data_original, method='hip_center')
>>> # Note: In practice, you need to store hip_center and skeleton_size
>>> # during normalization for accurate denormalization
>>> # Image center denormalization (simpler)
>>> normalized = normalize_skeleton(data_original, method='image_center')
>>> denormalized = denormalize_skeleton(normalized, method='image_center')
>>> np.allclose(data_original[:2], denormalized[:2], atol=1.0) # Within 1 pixel
True
"""
C, T, V, M = data.shape
assert C == 3, f"Expected 3 channels (x, y, conf), got {C}"
if method == 'hip_center':
if hip_center is None or skeleton_size is None:
raise ValueError(
"hip_center denormalization requires 'hip_center' and 'skeleton_size' parameters. "
"These values must be saved during normalization. "
"For visualization without original values, consider using method='image_center'."
)
return _denormalize_by_hip_center(data, hip_center, skeleton_size)
elif method == 'image_center':
return _denormalize_by_image_center(data, img_width, img_height)
else:
raise ValueError(
f"Unknown denormalization method: '{method}'. "
f"Use 'hip_center' or 'image_center'."
)
def _denormalize_by_hip_center(
data: np.ndarray,
hip_center: np.ndarray,
skeleton_size: float
) -> np.ndarray:
"""
Reverse hip center normalization.
Args:
data: Normalized skeleton data (C, T, V, M)
hip_center: Original hip center (2, T, 1, M) or (2,) for constant
skeleton_size: Original skeleton size (scalar)
Returns:
denormalized_data: (C, T, V, M) in original pixel coordinates
"""
C, T, V, M = data.shape
denormalized_data = data.copy()
# Reverse scale and centering: x_original = x_normalized * skeleton_size + hip_center
denormalized_data[:2] = denormalized_data[:2] * skeleton_size + hip_center
# Confidence channel unchanged
return denormalized_data
def _denormalize_by_image_center(
data: np.ndarray,
img_width: int = 3840,
img_height: int = 2160
) -> np.ndarray:
"""
Reverse image center normalization.
Args:
data: Normalized skeleton data (C, T, V, M) with x,y in [-0.5, 0.5]
img_width: Image width in pixels (default: 3840)
img_height: Image height in pixels (default: 2160)
Returns:
denormalized_data: (C, T, V, M) with x,y in pixel coordinates
"""
C, T, V, M = data.shape
denormalized_data = data.copy()
# Denormalize x-coordinate: [-0.5, 0.5] -> [0, img_width]
denormalized_data[0] = (denormalized_data[0] + 0.5) * img_width
# Denormalize y-coordinate: [-0.5, 0.5] -> [0, img_height]
denormalized_data[1] = (denormalized_data[1] + 0.5) * img_height
# Confidence channel remains unchanged
return denormalized_data
def test_augmentation():
"""
Test augmentation functions and demonstrate their effects.
This function creates synthetic skeleton data and applies each augmentation
to verify correctness and visualize the transformations.
"""
print("Skeleton Data Augmentation Test")
print("=" * 80)
# Create synthetic skeleton data (C, T, V, M)
C, T, V, M = 3, 60, 17, 1
np.random.seed(42)
# Generate synthetic data in pixel coordinates
data = np.random.rand(C, T, V, M)
data[0] *= 1920 # x in [0, 1920]
data[1] *= 1080 # y in [0, 1080]
data[2] = np.random.uniform(0.5, 1.0, (T, V, M)) # confidence in [0.5, 1.0]
print(f"\nOriginal data shape: {data.shape}")
print(f"Original x range: [{data[0].min():.2f}, {data[0].max():.2f}] pixels")
print(f"Original y range: [{data[1].min():.2f}, {data[1].max():.2f}] pixels")
print(f"Original confidence range: [{data[2].min():.3f}, {data[2].max():.3f}]")
# Test 1: Normalization
print("\n" + "-" * 80)
print("Test 1: Normalization")
print("-" * 80)
normalized = normalize_skeleton(data, img_width=1920, img_height=1080)
print(f"Normalized x range: [{normalized[0].min():.3f}, {normalized[0].max():.3f}]")
print(f"Normalized y range: [{normalized[1].min():.3f}, {normalized[1].max():.3f}]")
print(f"Normalized confidence range: [{normalized[2].min():.3f}, {normalized[2].max():.3f}]")
# Verify denormalization
denormalized = denormalize_skeleton(normalized, img_width=1920, img_height=1080)
reconstruction_error = np.abs(data - denormalized).max()
print(f"Denormalization reconstruction error: {reconstruction_error:.6f} pixels")
# Test 2: Horizontal Flip
print("\n" + "-" * 80)
print("Test 2: Horizontal Flip")
print("-" * 80)
np.random.seed(42)
flipped = augment_skeleton(normalized, prob=1.0) # Force all augmentations
print(f"Original x (frame 0, keypoint 0): {normalized[0, 0, 0, 0]:.3f}")
print(f"After augmentation x: {flipped[0, 0, 0, 0]:.3f}")
print(f"X-coordinate sign flipped: {np.sign(normalized[0].mean()) != np.sign(flipped[0].mean())}")
# Test 3: Check left/right keypoint swapping
print("\n" + "-" * 80)
print("Test 3: Keypoint Pair Swapping (Horizontal Flip)")
print("-" * 80)
# Create data with distinctive values for left/right pairs
test_data = np.zeros((3, 60, 17, 1))
test_data[0, :, 5, 0] = 100 # left_shoulder x = 100
test_data[0, :, 6, 0] = -100 # right_shoulder x = -100
flipped_test = _horizontal_flip(test_data)
print(f"Original left_shoulder (idx 5) x: {test_data[0, 0, 5, 0]:.1f}")
print(f"Original right_shoulder (idx 6) x: {test_data[0, 0, 6, 0]:.1f}")
print(f"Flipped left_shoulder (idx 5) x: {flipped_test[0, 0, 5, 0]:.1f}")
print(f"Flipped right_shoulder (idx 6) x: {flipped_test[0, 0, 6, 0]:.1f}")
print(f"Swap successful: {flipped_test[0, 0, 5, 0] == 100 and flipped_test[0, 0, 6, 0] == -100}")
# Test 4: Gaussian Noise
print("\n" + "-" * 80)
print("Test 4: Gaussian Noise")
print("-" * 80)
np.random.seed(42)
noisy = _add_gaussian_noise(normalized, std=0.01)
noise_magnitude = np.abs(noisy[:2] - normalized[:2]).max()
confidence_unchanged = np.allclose(noisy[2], normalized[2])
print(f"Max noise magnitude (x,y): {noise_magnitude:.4f}")
print(f"Confidence channel unchanged: {confidence_unchanged}")
# Test 5: Temporal Crop and Resize
print("\n" + "-" * 80)
print("Test 5: Temporal Crop and Resize")
print("-" * 80)
np.random.seed(42)
cropped = _temporal_crop_resize(normalized, crop_ratio_range=(0.8, 1.0))
print(f"Original temporal length: {normalized.shape[1]}")
print(f"Cropped temporal length: {cropped.shape[1]}")
print(f"Shape preserved: {cropped.shape == normalized.shape}")
# Test 6: Full Augmentation Pipeline
print("\n" + "-" * 80)
print("Test 6: Full Augmentation Pipeline")
print("-" * 80)
np.random.seed(42)
augmented = augment_skeleton(normalized, prob=0.5)
print(f"Augmented shape: {augmented.shape}")
print(f"Augmented x range: [{augmented[0].min():.3f}, {augmented[0].max():.3f}]")
print(f"Augmented y range: [{augmented[1].min():.3f}, {augmented[1].max():.3f}]")
print(f"Augmented confidence range: [{augmented[2].min():.3f}, {augmented[2].max():.3f}]")
# Test 7: Augmentation Statistics (Run 100 times)
print("\n" + "-" * 80)
print("Test 7: Augmentation Statistics (100 runs with prob=0.5)")
print("-" * 80)
np.random.seed(42)
augmentation_counts = {"flip": 0, "noise": 0, "crop": 0}
num_runs = 100
for _ in range(num_runs):
original_copy = normalized.copy()
augmented = augment_skeleton(original_copy, prob=0.5)
# Detect which augmentations were applied (heuristics)
x_sign_changed = np.sign(augmented[0].mean()) != np.sign(normalized[0].mean())
noise_added = not np.allclose(augmented[:2], normalized[:2], atol=1e-4)
# Crop detection is harder, skip for now
if x_sign_changed:
augmentation_counts["flip"] += 1
if noise_added and not x_sign_changed:
augmentation_counts["noise"] += 1
print(f"Horizontal flip applied: {augmentation_counts['flip']}/{num_runs} times")
print(f"Gaussian noise applied: {augmentation_counts['noise']}/{num_runs} times")
print(f"Expected frequency (prob=0.5): ~50 times per augmentation")
print("\n" + "=" * 80)
print("All tests completed successfully")
print("=" * 80)
if __name__ == "__main__":
test_augmentation()
|