Spaces:
Sleeping
Sleeping
File size: 9,493 Bytes
8133f1d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
"""
COCO Skeleton Graph Definition for ST-GCN
This module defines the skeleton graph structure for COCO 17-keypoint format
used by YOLOv11-Pose. The graph represents spatial relationships between joints
as an adjacency matrix for Spatial-Temporal Graph Convolutional Networks.
COCO 17 Keypoints:
0: nose, 1: left_eye, 2: right_eye, 3: left_ear, 4: right_ear
5: left_shoulder, 6: right_shoulder, 7: left_elbow, 8: right_elbow
9: left_wrist, 10: right_wrist, 11: left_hip, 12: right_hip
13: left_knee, 14: right_knee, 15: left_ankle, 16: right_ankle
References:
- ST-GCN Paper: https://arxiv.org/abs/1801.07455
- COCO Dataset: https://cocodataset.org/#keypoints-2020
"""
import numpy as np
class Graph:
"""COCO skeleton graph for ST-GCN."""
def __init__(self, labeling_mode='spatial'):
"""
Initialize COCO skeleton graph.
Args:
labeling_mode: Partitioning strategy for skeleton graph
- 'spatial': Partition based on spatial distance from center
- 'uniform': All edges treated equally (baseline)
"""
self.num_nodes = 17 # COCO keypoints
self.labeling_mode = labeling_mode
# Define skeleton connectivity (parent-child relationships)
self.edges = self._get_edges()
# Create adjacency matrix
self.A = self._create_adjacency_matrix()
# Get partitioning strategy
self.A_with_partitions = self._get_partitioned_adjacency()
def _get_edges(self):
"""
Define COCO skeleton edges (connections between keypoints).
Returns:
List of tuples representing connected joints
"""
# COCO skeleton structure (17 keypoints)
edges = [
# Head connections
(0, 1), (0, 2), # nose to eyes
(1, 3), (2, 4), # eyes to ears
# Torso connections
(5, 6), # shoulders
(5, 11), (6, 12), # shoulders to hips
(11, 12), # hips
# Left arm
(5, 7), (7, 9), # shoulder -> elbow -> wrist
# Right arm
(6, 8), (8, 10), # shoulder -> elbow -> wrist
# Left leg
(11, 13), (13, 15), # hip -> knee -> ankle
# Right leg
(12, 14), (14, 16), # hip -> knee -> ankle
]
return edges
def _create_adjacency_matrix(self):
"""
Create adjacency matrix from skeleton edges.
Returns:
A: (V, V) adjacency matrix where V=17 (number of keypoints)
"""
A = np.zeros((self.num_nodes, self.num_nodes))
# Add edges (bidirectional connections)
for i, j in self.edges:
A[i, j] = 1
A[j, i] = 1
# Add self-connections
A += np.eye(self.num_nodes)
return A
def _get_partitioned_adjacency(self):
"""
Partition adjacency matrix based on labeling strategy.
For spatial labeling, partitions are:
- Partition 0: Self-connections (centripetal group)
- Partition 1: Joints closer to skeleton center (centripetal group)
- Partition 2: Joints farther from skeleton center (centrifugal group)
Returns:
A_partitioned: (num_partitions, V, V) stacked adjacency matrices
"""
if self.labeling_mode == 'uniform':
# Uniform labeling: all edges treated equally
return self.A[np.newaxis, :, :]
elif self.labeling_mode == 'spatial':
# Spatial labeling: partition based on distance from center
# Center joint is defined as the midpoint between shoulders (joints 5, 6)
center_joints = [5, 6] # Left and right shoulders
# Initialize partition matrices
A_partitions = []
# Partition 0: Self-connections
A_self = np.eye(self.num_nodes)
A_partitions.append(A_self)
# Partition 1: Centripetal (moving toward center)
# Partition 2: Centrifugal (moving away from center)
A_centripetal = np.zeros((self.num_nodes, self.num_nodes))
A_centrifugal = np.zeros((self.num_nodes, self.num_nodes))
# Compute distances from center for each joint
distances = self._compute_center_distances(center_joints)
# Classify edges based on distance change (both directions)
for i, j in self.edges:
if distances[j] < distances[i]:
# Moving toward center (j is closer than i)
A_centripetal[i, j] = 1
# Reverse direction: moving away from center
A_centrifugal[j, i] = 1
elif distances[j] > distances[i]:
# Moving away from center (j is farther than i)
A_centrifugal[i, j] = 1
# Reverse direction: moving toward center
A_centripetal[j, i] = 1
else:
# Same distance: treat as centripetal for both directions
A_centripetal[i, j] = 1
A_centripetal[j, i] = 1
A_partitions.append(A_centripetal)
A_partitions.append(A_centrifugal)
# Stack partitions: (3, V, V)
A_partitioned = np.stack(A_partitions, axis=0)
return A_partitioned
else:
raise ValueError(f"Unknown labeling mode: {self.labeling_mode}")
def _compute_center_distances(self, center_joints):
"""
Compute graph distance from center joints to all other joints.
Uses BFS to compute shortest path distance in graph.
Args:
center_joints: List of joint indices considered as center
Returns:
distances: (V,) array of distances from center
"""
from collections import deque
distances = np.full(self.num_nodes, np.inf)
queue = deque()
# Initialize center joints with distance 0
for joint in center_joints:
distances[joint] = 0
queue.append(joint)
# BFS to compute distances
while queue:
current = queue.popleft()
current_dist = distances[current]
# Check all neighbors
for neighbor in range(self.num_nodes):
if self.A[current, neighbor] > 0 and neighbor != current:
if distances[neighbor] > current_dist + 1:
distances[neighbor] = current_dist + 1
queue.append(neighbor)
return distances
def get_adjacency_matrix(self, normalize=True):
"""
Get normalized adjacency matrix for ST-GCN.
Args:
normalize: Whether to apply symmetric normalization (D^-0.5 * A * D^-0.5)
Returns:
A_normalized: Normalized adjacency matrix
"""
if self.labeling_mode == 'spatial':
# Return partitioned adjacency matrices
A = self.A_with_partitions
if normalize:
# Normalize each partition separately
A_normalized = []
for partition in A:
A_norm = self._normalize_adjacency(partition)
A_normalized.append(A_norm)
return np.stack(A_normalized, axis=0)
else:
return A
else:
# Return single adjacency matrix
A = self.A[np.newaxis, :, :]
if normalize:
A_norm = self._normalize_adjacency(A[0])
return A_norm[np.newaxis, :, :]
else:
return A
def _normalize_adjacency(self, A):
"""
Apply symmetric normalization: D^-0.5 * A * D^-0.5
Args:
A: (V, V) adjacency matrix
Returns:
A_normalized: (V, V) normalized adjacency matrix
"""
# Compute degree matrix
D = np.sum(A, axis=1)
# Avoid division by zero
D[D == 0] = 1
# Compute D^-0.5
D_inv_sqrt = np.power(D, -0.5)
# Apply normalization: D^-0.5 * A * D^-0.5
A_normalized = A * D_inv_sqrt[:, np.newaxis] * D_inv_sqrt[np.newaxis, :]
return A_normalized
def get_coco_graph(labeling_mode='spatial'):
"""
Convenience function to get COCO skeleton graph.
Args:
labeling_mode: Partitioning strategy ('spatial' or 'uniform')
Returns:
Graph object with COCO skeleton structure
"""
return Graph(labeling_mode=labeling_mode)
if __name__ == '__main__':
# Test graph construction
print("Testing COCO Skeleton Graph...")
# Test uniform labeling
graph_uniform = Graph(labeling_mode='uniform')
print(f"\nUniform labeling:")
print(f" Adjacency shape: {graph_uniform.A.shape}")
print(f" Partitions shape: {graph_uniform.A_with_partitions.shape}")
print(f" Number of edges: {len(graph_uniform.edges)}")
# Test spatial labeling
graph_spatial = Graph(labeling_mode='spatial')
print(f"\nSpatial labeling:")
print(f" Adjacency shape: {graph_spatial.A.shape}")
print(f" Partitions shape: {graph_spatial.A_with_partitions.shape}")
# Get normalized adjacency
A_norm = graph_spatial.get_adjacency_matrix(normalize=True)
print(f"\nNormalized adjacency shape: {A_norm.shape}")
print("\nCOCO skeleton graph construction successful!")
|