Spaces:
Runtime error
Runtime error
Upload src/utils/transforms.py with huggingface_hub
Browse files- src/utils/transforms.py +395 -0
src/utils/transforms.py
ADDED
|
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import functools
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
|
| 5 |
+
########################Implementations of the functions in the PyTorch3D########################
|
| 6 |
+
def quaternion_to_matrix(quaternions):
|
| 7 |
+
r, i, j, k = torch.unbind(quaternions, -1)
|
| 8 |
+
two_s = 2.0 / (quaternions * quaternions).sum(-1)
|
| 9 |
+
|
| 10 |
+
o = torch.stack(
|
| 11 |
+
(
|
| 12 |
+
1 - two_s * (j * j + k * k),
|
| 13 |
+
two_s * (i * j - k * r),
|
| 14 |
+
two_s * (i * k + j * r),
|
| 15 |
+
two_s * (i * j + k * r),
|
| 16 |
+
1 - two_s * (i * i + k * k),
|
| 17 |
+
two_s * (j * k - i * r),
|
| 18 |
+
two_s * (i * k - j * r),
|
| 19 |
+
two_s * (j * k + i * r),
|
| 20 |
+
1 - two_s * (i * i + j * j),
|
| 21 |
+
),
|
| 22 |
+
-1,
|
| 23 |
+
)
|
| 24 |
+
return o.reshape(quaternions.shape[:-1] + (3, 3))
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def _copysign(a, b):
|
| 28 |
+
signs_differ = (a < 0) != (b < 0)
|
| 29 |
+
return torch.where(signs_differ, -a, a)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor:
|
| 33 |
+
ret = torch.zeros_like(x)
|
| 34 |
+
positive_mask = x > 0
|
| 35 |
+
ret[positive_mask] = torch.sqrt(x[positive_mask])
|
| 36 |
+
return ret
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor:
|
| 40 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
| 41 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
| 42 |
+
|
| 43 |
+
batch_dim = matrix.shape[:-2]
|
| 44 |
+
m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind(
|
| 45 |
+
matrix.reshape(*batch_dim, 9), dim=-1
|
| 46 |
+
)
|
| 47 |
+
|
| 48 |
+
q_abs = _sqrt_positive_part(
|
| 49 |
+
torch.stack(
|
| 50 |
+
[
|
| 51 |
+
1.0 + m00 + m11 + m22,
|
| 52 |
+
1.0 + m00 - m11 - m22,
|
| 53 |
+
1.0 - m00 + m11 - m22,
|
| 54 |
+
1.0 - m00 - m11 + m22,
|
| 55 |
+
],
|
| 56 |
+
dim=-1,
|
| 57 |
+
)
|
| 58 |
+
)
|
| 59 |
+
|
| 60 |
+
quat_by_rijk = torch.stack(
|
| 61 |
+
[
|
| 62 |
+
torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1),
|
| 63 |
+
torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1),
|
| 64 |
+
torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1),
|
| 65 |
+
torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1),
|
| 66 |
+
],
|
| 67 |
+
dim=-2,
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(q_abs.new_tensor(0.1)))
|
| 71 |
+
|
| 72 |
+
return quat_candidates[
|
| 73 |
+
F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, :
|
| 74 |
+
].reshape(*batch_dim, 4)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def _axis_angle_rotation(axis: str, angle):
|
| 78 |
+
cos = torch.cos(angle)
|
| 79 |
+
sin = torch.sin(angle)
|
| 80 |
+
one = torch.ones_like(angle)
|
| 81 |
+
zero = torch.zeros_like(angle)
|
| 82 |
+
|
| 83 |
+
if axis == "X":
|
| 84 |
+
R_flat = (one, zero, zero, zero, cos, -sin, zero, sin, cos)
|
| 85 |
+
if axis == "Y":
|
| 86 |
+
R_flat = (cos, zero, sin, zero, one, zero, -sin, zero, cos)
|
| 87 |
+
if axis == "Z":
|
| 88 |
+
R_flat = (cos, -sin, zero, sin, cos, zero, zero, zero, one)
|
| 89 |
+
|
| 90 |
+
return torch.stack(R_flat, -1).reshape(angle.shape + (3, 3))
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def euler_angles_to_matrix(euler_angles, convention: str):
|
| 94 |
+
if euler_angles.dim() == 0 or euler_angles.shape[-1] != 3:
|
| 95 |
+
raise ValueError("Invalid input euler angles.")
|
| 96 |
+
if len(convention) != 3:
|
| 97 |
+
raise ValueError("Convention must have 3 letters.")
|
| 98 |
+
if convention[1] in (convention[0], convention[2]):
|
| 99 |
+
raise ValueError(f"Invalid convention {convention}.")
|
| 100 |
+
for letter in convention:
|
| 101 |
+
if letter not in ("X", "Y", "Z"):
|
| 102 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
| 103 |
+
matrices = map(_axis_angle_rotation, convention, torch.unbind(euler_angles, -1))
|
| 104 |
+
return functools.reduce(torch.matmul, matrices)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _angle_from_tan(
|
| 108 |
+
axis: str, other_axis: str, data, horizontal: bool, tait_bryan: bool
|
| 109 |
+
):
|
| 110 |
+
i1, i2 = {"X": (2, 1), "Y": (0, 2), "Z": (1, 0)}[axis]
|
| 111 |
+
if horizontal:
|
| 112 |
+
i2, i1 = i1, i2
|
| 113 |
+
even = (axis + other_axis) in ["XY", "YZ", "ZX"]
|
| 114 |
+
if horizontal == even:
|
| 115 |
+
return torch.atan2(data[..., i1], data[..., i2])
|
| 116 |
+
if tait_bryan:
|
| 117 |
+
return torch.atan2(-data[..., i2], data[..., i1])
|
| 118 |
+
return torch.atan2(data[..., i2], -data[..., i1])
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
def _index_from_letter(letter: str):
|
| 122 |
+
if letter == "X":
|
| 123 |
+
return 0
|
| 124 |
+
if letter == "Y":
|
| 125 |
+
return 1
|
| 126 |
+
if letter == "Z":
|
| 127 |
+
return 2
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
def matrix_to_euler_angles(matrix, convention: str):
|
| 131 |
+
if len(convention) != 3:
|
| 132 |
+
raise ValueError("Convention must have 3 letters.")
|
| 133 |
+
if convention[1] in (convention[0], convention[2]):
|
| 134 |
+
raise ValueError(f"Invalid convention {convention}.")
|
| 135 |
+
for letter in convention:
|
| 136 |
+
if letter not in ("X", "Y", "Z"):
|
| 137 |
+
raise ValueError(f"Invalid letter {letter} in convention string.")
|
| 138 |
+
if matrix.size(-1) != 3 or matrix.size(-2) != 3:
|
| 139 |
+
raise ValueError(f"Invalid rotation matrix shape f{matrix.shape}.")
|
| 140 |
+
i0 = _index_from_letter(convention[0])
|
| 141 |
+
i2 = _index_from_letter(convention[2])
|
| 142 |
+
tait_bryan = i0 != i2
|
| 143 |
+
if tait_bryan:
|
| 144 |
+
central_angle = torch.asin(
|
| 145 |
+
matrix[..., i0, i2] * (-1.0 if i0 - i2 in [-1, 2] else 1.0)
|
| 146 |
+
)
|
| 147 |
+
else:
|
| 148 |
+
central_angle = torch.acos(matrix[..., i0, i0])
|
| 149 |
+
|
| 150 |
+
o = (
|
| 151 |
+
_angle_from_tan(
|
| 152 |
+
convention[0], convention[1], matrix[..., i2], False, tait_bryan
|
| 153 |
+
),
|
| 154 |
+
central_angle,
|
| 155 |
+
_angle_from_tan(
|
| 156 |
+
convention[2], convention[1], matrix[..., i0, :], True, tait_bryan
|
| 157 |
+
),
|
| 158 |
+
)
|
| 159 |
+
return torch.stack(o, -1)
|
| 160 |
+
|
| 161 |
+
|
| 162 |
+
def standardize_quaternion(quaternions):
|
| 163 |
+
return torch.where(quaternions[..., 0:1] < 0, -quaternions, quaternions)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def quaternion_raw_multiply(a, b):
|
| 167 |
+
aw, ax, ay, az = torch.unbind(a, -1)
|
| 168 |
+
bw, bx, by, bz = torch.unbind(b, -1)
|
| 169 |
+
ow = aw * bw - ax * bx - ay * by - az * bz
|
| 170 |
+
ox = aw * bx + ax * bw + ay * bz - az * by
|
| 171 |
+
oy = aw * by - ax * bz + ay * bw + az * bx
|
| 172 |
+
oz = aw * bz + ax * by - ay * bx + az * bw
|
| 173 |
+
return torch.stack((ow, ox, oy, oz), -1)
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
def quaternion_multiply(a, b):
|
| 177 |
+
ab = quaternion_raw_multiply(a, b)
|
| 178 |
+
return standardize_quaternion(ab)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def quaternion_invert(quaternion):
|
| 182 |
+
return quaternion * quaternion.new_tensor([1, -1, -1, -1])
|
| 183 |
+
|
| 184 |
+
|
| 185 |
+
def quaternion_apply(quaternion, point):
|
| 186 |
+
if point.size(-1) != 3:
|
| 187 |
+
raise ValueError(f"Points are not in 3D, f{point.shape}.")
|
| 188 |
+
real_parts = point.new_zeros(point.shape[:-1] + (1,))
|
| 189 |
+
point_as_quaternion = torch.cat((real_parts, point), -1)
|
| 190 |
+
out = quaternion_raw_multiply(
|
| 191 |
+
quaternion_raw_multiply(quaternion, point_as_quaternion),
|
| 192 |
+
quaternion_invert(quaternion),
|
| 193 |
+
)
|
| 194 |
+
return out[..., 1:]
|
| 195 |
+
|
| 196 |
+
|
| 197 |
+
def axis_angle_to_matrix(axis_angle):
|
| 198 |
+
return quaternion_to_matrix(axis_angle_to_quaternion(axis_angle))
|
| 199 |
+
|
| 200 |
+
|
| 201 |
+
def matrix_to_axis_angle(matrix):
|
| 202 |
+
return quaternion_to_axis_angle(matrix_to_quaternion(matrix))
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def axis_angle_to_quaternion(axis_angle):
|
| 206 |
+
angles = torch.norm(axis_angle, p=2, dim=-1, keepdim=True)
|
| 207 |
+
half_angles = 0.5 * angles
|
| 208 |
+
eps = 1e-6
|
| 209 |
+
small_angles = angles.abs() < eps
|
| 210 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
| 211 |
+
sin_half_angles_over_angles[~small_angles] = (
|
| 212 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
| 213 |
+
)
|
| 214 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
| 215 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
| 216 |
+
sin_half_angles_over_angles[small_angles] = (
|
| 217 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
| 218 |
+
)
|
| 219 |
+
quaternions = torch.cat(
|
| 220 |
+
[torch.cos(half_angles), axis_angle * sin_half_angles_over_angles], dim=-1
|
| 221 |
+
)
|
| 222 |
+
return quaternions
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
def quaternion_to_axis_angle(quaternions):
|
| 226 |
+
norms = torch.norm(quaternions[..., 1:], p=2, dim=-1, keepdim=True)
|
| 227 |
+
half_angles = torch.atan2(norms, quaternions[..., :1])
|
| 228 |
+
angles = 2 * half_angles
|
| 229 |
+
eps = 1e-6
|
| 230 |
+
small_angles = angles.abs() < eps
|
| 231 |
+
sin_half_angles_over_angles = torch.empty_like(angles)
|
| 232 |
+
sin_half_angles_over_angles[~small_angles] = (
|
| 233 |
+
torch.sin(half_angles[~small_angles]) / angles[~small_angles]
|
| 234 |
+
)
|
| 235 |
+
# for x small, sin(x/2) is about x/2 - (x/2)^3/6
|
| 236 |
+
# so sin(x/2)/x is about 1/2 - (x*x)/48
|
| 237 |
+
sin_half_angles_over_angles[small_angles] = (
|
| 238 |
+
0.5 - (angles[small_angles] * angles[small_angles]) / 48
|
| 239 |
+
)
|
| 240 |
+
return quaternions[..., 1:] / sin_half_angles_over_angles
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor:
|
| 244 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
| 245 |
+
b1 = F.normalize(a1, dim=-1)
|
| 246 |
+
b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1
|
| 247 |
+
b2 = F.normalize(b2, dim=-1)
|
| 248 |
+
b3 = torch.cross(b1, b2, dim=-1)
|
| 249 |
+
return torch.stack((b1, b2, b3), dim=-2)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor:
|
| 253 |
+
return matrix[..., :2, :].clone().reshape(*matrix.size()[:-2], 6)
|
| 254 |
+
|
| 255 |
+
|
| 256 |
+
import numpy as np
|
| 257 |
+
def rotation_6d_to_matrix_np(d6: np.ndarray) -> np.ndarray:
|
| 258 |
+
a1, a2 = d6[..., :3], d6[..., 3:]
|
| 259 |
+
b1 = a1 / np.linalg.norm(a1, axis=-1, keepdims=True)
|
| 260 |
+
b2 = a2 - np.sum(b1 * a2, axis=-1, keepdims=True) * b1
|
| 261 |
+
b2 = b2 / np.linalg.norm(b2, axis=-1, keepdims=True)
|
| 262 |
+
b3 = np.cross(b1, b2, axis=-1)
|
| 263 |
+
return np.stack((b1, b2, b3), axis=-2)
|
| 264 |
+
|
| 265 |
+
def matrix_to_rotation_6d_np(matrix: np.ndarray) -> np.ndarray:
|
| 266 |
+
return matrix[..., :2, :].reshape(*matrix.shape[:-2], 6)
|
| 267 |
+
|
| 268 |
+
########################Implementations of the functions in the PyTorch3D########################
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
from einops import rearrange
|
| 273 |
+
def transform_points(x, mat):
|
| 274 |
+
shape = x.shape
|
| 275 |
+
x = rearrange(x, 'b t (j c) -> b (t j) c', c=3) # B x N x 3
|
| 276 |
+
x = torch.einsum('bpc,bck->bpk', mat[:, :3, :3], x.permute(0, 2, 1)) # B x 3 x N N x B x 3
|
| 277 |
+
x = x.permute(2, 0, 1) + mat[:, :3, 3]
|
| 278 |
+
x = x.permute(1, 0, 2)
|
| 279 |
+
x = x.reshape(shape)
|
| 280 |
+
return x
|
| 281 |
+
|
| 282 |
+
|
| 283 |
+
def transform_points_numpy(x, mat):
|
| 284 |
+
shape = x.shape
|
| 285 |
+
x = x.reshape(shape[0], -1, 3) # b x (t*j) x c
|
| 286 |
+
x = np.einsum('bpc,bck->bpk', mat[:, :3, :3], np.transpose(x, (0, 2, 1)))
|
| 287 |
+
x = np.transpose(x, (2, 0, 1)) + mat[:, :3, 3]
|
| 288 |
+
x = np.transpose(x, (1, 0, 2))
|
| 289 |
+
x = x.reshape(shape)
|
| 290 |
+
return x
|
| 291 |
+
|
| 292 |
+
|
| 293 |
+
def zup_to_yup(coord):
|
| 294 |
+
if len(coord.shape) > 1:
|
| 295 |
+
coord = coord[..., [0, 2, 1]]
|
| 296 |
+
coord[..., 2] *= -1
|
| 297 |
+
else:
|
| 298 |
+
coord = coord[[0, 2, 1]]
|
| 299 |
+
coord[2] *= -1
|
| 300 |
+
return coord
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
def rigid_transform_3D(A, B, scale=False):
|
| 304 |
+
assert len(A) == len(B)
|
| 305 |
+
N = A.shape[0] # total points
|
| 306 |
+
centroid_A = np.mean(A, axis=0)
|
| 307 |
+
centroid_B = np.mean(B, axis=0)
|
| 308 |
+
|
| 309 |
+
# center the points
|
| 310 |
+
AA = A - np.tile(centroid_A, (N, 1))
|
| 311 |
+
BB = B - np.tile(centroid_B, (N, 1))
|
| 312 |
+
if scale:
|
| 313 |
+
H = np.transpose(BB) * AA / N
|
| 314 |
+
else:
|
| 315 |
+
H = np.transpose(BB) * AA
|
| 316 |
+
|
| 317 |
+
U, S, Vt = np.linalg.svd(H)
|
| 318 |
+
R = Vt.T * U.T
|
| 319 |
+
# special reflection case
|
| 320 |
+
if np.linalg.det(R) < 0:
|
| 321 |
+
Vt[2, :] *= -1
|
| 322 |
+
R = Vt.T * U.T
|
| 323 |
+
|
| 324 |
+
if scale:
|
| 325 |
+
varA = np.var(A, axis=0).sum()
|
| 326 |
+
c = 1 / (1 / varA * np.sum(S)) # scale factor
|
| 327 |
+
t = -R * (centroid_B.T * c) + centroid_A.T
|
| 328 |
+
else:
|
| 329 |
+
c = 1
|
| 330 |
+
t = -R * centroid_B.T + centroid_A.T
|
| 331 |
+
|
| 332 |
+
return c, R, t
|
| 333 |
+
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
|
| 337 |
+
##################joints blending######################
|
| 338 |
+
@torch.jit.script
|
| 339 |
+
def slerp(q0: torch.Tensor, q1: torch.Tensor, t: torch.Tensor) -> torch.Tensor:
|
| 340 |
+
"""
|
| 341 |
+
Spherical linear interpolation between two quaternions.
|
| 342 |
+
|
| 343 |
+
Args:
|
| 344 |
+
q0: (..., 4) tensor of quaternions
|
| 345 |
+
q1: (..., 4) tensor of quaternions
|
| 346 |
+
t: (..., 1) tensor of interpolation coefficients
|
| 347 |
+
|
| 348 |
+
Returns:
|
| 349 |
+
(..., 4) tensor of quaternions
|
| 350 |
+
"""
|
| 351 |
+
cos_half_theta = torch.sum(q0 * q1, dim=-1)
|
| 352 |
+
|
| 353 |
+
neg_mask = cos_half_theta < 0
|
| 354 |
+
q1 = q1.clone()
|
| 355 |
+
q1[neg_mask] = -q1[neg_mask]
|
| 356 |
+
cos_half_theta = torch.abs(cos_half_theta)
|
| 357 |
+
cos_half_theta = torch.unsqueeze(cos_half_theta, dim=-1)
|
| 358 |
+
|
| 359 |
+
half_theta = torch.acos(cos_half_theta)
|
| 360 |
+
sin_half_theta = torch.sqrt(1.0 - cos_half_theta * cos_half_theta)
|
| 361 |
+
|
| 362 |
+
ratioA = torch.sin((1 - t) * half_theta) / sin_half_theta
|
| 363 |
+
ratioB = torch.sin(t * half_theta) / sin_half_theta
|
| 364 |
+
|
| 365 |
+
new_q = ratioA * q0 + ratioB * q1
|
| 366 |
+
|
| 367 |
+
new_q = torch.where(torch.abs(sin_half_theta) < 0.001, 0.5 * q0 + 0.5 * q1, new_q)
|
| 368 |
+
new_q = torch.where(torch.abs(cos_half_theta) >= 1, q0, new_q)
|
| 369 |
+
|
| 370 |
+
return new_q
|
| 371 |
+
|
| 372 |
+
|
| 373 |
+
def blend_joint_rot_batch(body_pose_1, body_pose_2, t):
|
| 374 |
+
"""
|
| 375 |
+
Blend two batches of joint rotations using spherical linear interpolation.
|
| 376 |
+
|
| 377 |
+
Args:
|
| 378 |
+
body_pose_1: (batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
|
| 379 |
+
body_pose_2: (batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
|
| 380 |
+
t: (batch_size, 1, num_joints, 1) tensor of interpolation coefficients
|
| 381 |
+
|
| 382 |
+
Returns:
|
| 383 |
+
(batch_size, sequence_length, num_joints, 3) tensor of axis-angle rotations
|
| 384 |
+
"""
|
| 385 |
+
shape = body_pose_1.shape
|
| 386 |
+
if len(shape) == 3:
|
| 387 |
+
body_pose_1 = body_pose_1.reshape(shape[0], shape[1], -1, 3)
|
| 388 |
+
body_pose_2 = body_pose_2.reshape(shape[0], shape[1], -1, 3)
|
| 389 |
+
ret = quaternion_to_axis_angle(
|
| 390 |
+
slerp(axis_angle_to_quaternion(body_pose_1), axis_angle_to_quaternion(body_pose_2), t)
|
| 391 |
+
)
|
| 392 |
+
if len(shape) == 3:
|
| 393 |
+
ret = ret.reshape(shape)
|
| 394 |
+
|
| 395 |
+
return ret
|